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Online Learning

Online Convex Optimization [Zinkevich, 2003]
1: for t = 1, 2, . . . ,T do
2: Learner picks a decision wt ∈ W

Adversary chooses a function ft(·) : W 7→ R

3: Learner suffers loss ft(wt) and updates wt

4: end for

Learner Adversary

A classifier

+

+

An example , × ±1

A loss ( ) = max 1 , 0

Cumulative Loss

Cumulative Loss=
T∑

t=1

ft(wt)
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Performance Measure
Regret

Regret =
T∑

t=1

ft(wt)

︸ ︷︷ ︸

Cumulative Loss of Online Learner

− min
w∈W

T∑

t=1

ft(w)

︸ ︷︷ ︸

Minimal Loss of Offline Learner
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Convex Functions [Zinkevich, 2003]

Online Gradient Descent (OGD)

Regret = O
(√

T
)

Convex and Smooth Functions [Srebro et al., 2010]

OGD with prior knowledge

Regret = O
(

1 +
√

F∗

)

where F∗ = minw∈W

∑T
t=1 ft(w)

Exp-concave Functions [Hazan et al., 2007]
Strongly Convex Functions [Hazan et al., 2007]
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Learning in Changing Environments

Regret → Static Regret

Regret =
T∑

t=1

ft(wt)− min
w∈W

T∑

t=1

ft(w)

=
T∑

t=1

ft(wt)−
T∑

t=1

ft(w∗)

where w∗ ∈ argminw∈W

∑T
t=1 ft(w)

w∗ is reasonably good during T rounds

Changing Environments

Different decisions will be good in different periods

E.g., recommendation, stock market
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Adaptive Regret

The Basic Idea

Minimize the regret over every interval [r , s]

Regret
(
[r , s]

)
=

s∑

t=r

ft(wt)− min
w∈W

s∑

t=r

ft(w)

Weakly Adaptive Regret [Hazan and Seshadhri, 2007]

WA-Regret(T ) = max
[r ,s]⊆[T ]

Regret
(
[r , s]

)

The maximal regret over all intervals

Strongly Adaptive Regret [Daniely et al., 2015]

SA-Regret(T , τ) = max
[s,s+τ−1]⊆[T ]

Regret
(
[s, s + τ − 1]

)

The maximal regret over all intervals of length τ
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State-of-the-Art

Convex Functions [Jun et al., 2017]

Regret
(
[r , s]

)
= O

(√

(s − r) log s
)

⇒ SA-Regret(T , τ) = O
(√

τ logT
)

Exp-concave Functions [Hazan and Seshadhri, 2007]

Strongly Convex Functions [Zhang et al., 2018]
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State-of-the-Art

Convex Functions [Jun et al., 2017]

Regret
(
[r , s]

)
= O

(√

(s − r) log s
)

⇒ SA-Regret(T , τ) = O
(√

τ logT
)

Exp-concave Functions [Hazan and Seshadhri, 2007]

Strongly Convex Functions [Zhang et al., 2018]

Question

Can smoothness be exploited to boost the adaptive regret?
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Our Results

Convex and Smooth Functions

Regret
(
[r , s]

)
= O





√
√
√
√

(
s∑

t=r

ft(w)

)

log s · log(s − r)





Become tighter when
∑s

t=r ft(w) is small

Convex Functions [Jun et al., 2017]

Regret
(
[r , s]

)
= O

(√

(s − r) log s
)
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√
√
√
√

(
s∑

t=r

ft(w)

)

log s · log(s − r)





Become tighter when
∑s

t=r ft(w) is small

Convex Functions [Jun et al., 2017]

Regret
(
[r , s]

)
= O

(√

(s − r) log s
)

Convex and Smooth Functions

Regret
(
[r , s]

)
= O





√
√
√
√

(
s∑

t=r

ft(w)

)

log

s∑

t=1

ft(w) · log
s∑

t=r

ft(w)





Fully problem-dependent
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The Algorithm

An Expert-algorithm

Scale-free online gradient descent [Orabona and Pál, 2018]

Can exploit smoothness automatically

A Set of Intervals

Compact geometric covering intervals [Daniely et al., 2015]
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 · · ·

C0 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] · · ·

C1 [ ] [ ] [ ] [ ] [ · · ·

C2 [ ] [ ] · · ·

C3 [ ] · · ·

C4 [ · · ·

A Meta-algorithm

AdaNormalHedge [Luo and Schapire, 2015]

Attain a small-loss regret and support sleeping experts
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