Learning from Delayed Outcomes via Proxies with Applications to Recommender Systems

Timothy Mann Swen Goval **András György** Ray Jiang Huiyi Hu Balaji Lakshminarayanan Prav Srinivasan

ICML 2019 Poster #160

Motivating Example: Book Recommendation

- Task: Recommend books to customers.
- Success: Book is read in 90 days from purchase.
- Learning continuously (online) about new books is necessary.

 \Rightarrow Waiting 90 days for the feedback is infeasible.

This is done by online learning algorithms in the literature (Weinberger and Ordentlich, 2002; Mesterharm, 2005; Joulani et al., 2013; Quanrud and Khashabi, 2015).

Motivating Example: Book Recommendation

- Task: Recommend books to customers.
- Success: Book is read in 90 days from purchase.
- Learning continuously (online) about new books is necessary.

 \Rightarrow Waiting 90 days for the feedback is infeasible.

This is done by online learning algorithms in the literature (Weinberger and Ordentlich, 2002; Mesterharm, 2005; Joulani et al., 2013; Quanrud and Khashabi, 2015).

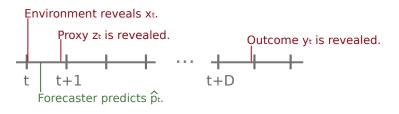
Our approach: Use less-delayed proxy information.

• E.g., if the customer starts reading the book on the first day.

Idealized Formal Model

Online learning problem:

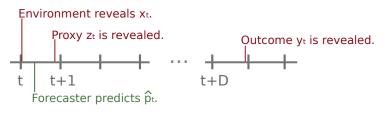
- Instance $x_t \in \mathcal{X}$ is revealed.
- Forecaster predicts an outcome distribution \hat{p}_t .
- Proxy $z_t \in \mathcal{Z}$ is revealed.
- Outcome $y_t \in \mathcal{Y}$ is revealed after delay D.



Idealized Formal Model

Online learning problem:

- Instance $x_t \in \mathcal{X}$ is revealed.
- Forecaster predicts an outcome distribution
 *p̂*_t.
- Proxy $z_t \in \mathcal{Z}$ is revealed.
- Outcome $y_t \in \mathcal{Y}$ is revealed after delay D.



Goal: minimize regret (for the log-loss)

$$\mathbb{E}\left[\operatorname{Regret}_{T}\right] = \min_{p} \mathbb{E}\left[\sum_{t=1}^{T} \left(\log p(y_{t}|x_{t}) - \log \hat{p}_{t}(y_{t}|x_{t})\right)\right]$$

Assumptions:

- x_1, x_2, \ldots, x_T are selected by an oblivious adversary.
- Factored model:
 - $z_t \sim h(\cdot|x_t)$ independently;
 - $y_t \sim g(\cdot|z_t)$ independently.
- Optimal forecaster is factored: $p(y|x) = \sum_{z} g(y|z)h(z|x)$.

Assumptions:

- x_1, x_2, \ldots, x_T are selected by an oblivious adversary.
- Factored model:
 - $z_t \sim h(\cdot|x_t)$ independently;
 - $y_t \sim g(\cdot|z_t)$ independently.
- Optimal forecaster is factored: $p(y|x) = \sum_{z} g(y|z)h(z|x)$.

Idea:

- Use factored forecasters $\hat{p}_t(y|x_t) = \sum_z g_t(y|z)h_t(z|x_t)$.
- Learn g_t and h_t separately.

Assumptions:

- x_1, x_2, \ldots, x_T are selected by an oblivious adversary.
- Factored model:
 - $z_t \sim h(\cdot|x_t)$ independently;
 - $y_t \sim g(\cdot|z_t)$ independently.
- Optimal forecaster is factored: $p(y|x) = \sum_{z} g(y|z)h(z|x)$.

Idea:

- Use factored forecasters $\hat{p}_t(y|x_t) = \sum_z g_t(y|z)h_t(z|x_t)$.
- Learn g_t and h_t separately.

Theorem. Using the Laplace or Krichevsky-Trofimov estimators for g_t and h_t , $\mathbb{E}[\operatorname{Regret}_T] = O((D + |\mathcal{X}|) \log T).$

Assumptions:

- x_1, x_2, \ldots, x_T are selected by an oblivious adversary.
- Factored model:
 - $z_t \sim h(\cdot|x_t)$ independently;
 - $y_t \sim g(\cdot|z_t)$ independently.
- Optimal forecaster is factored: $p(y|x) = \sum_{z} g(y|z)h(z|x)$.

Idea:

- Use factored forecasters $\hat{p}_t(y|x_t) = \sum_z g_t(y|z)h_t(z|x_t)$.
- Learn g_t and h_t separately.

Theorem. Using the Laplace or Krichevsky-Trofimov estimators for g_t and h_t , $\mathbb{E}[\operatorname{Regret}_T] = O((D + |\mathcal{X}|) \log T).$

Without proxy,

 $\mathbb{E}\left[\operatorname{Regret}_T\right] = \Omega(D|\mathcal{X}|\log T)$

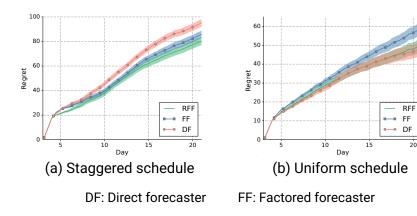
(Weinberger and Ordentlich, 2002).

Correcting for Modeling Errors

- Factorization assumption does not hold in practice.
- Practical solution: neural-network-based Factored Forecaster with Residual correction (RFF)

Correcting for Modeling Errors

- Factorization assumption does not hold in practice.
- Practical solution: neural-network-based Factored Forecaster with Residual correction (RFF)
- Real world data with delayed proxies



Summary

- Less-delayed proxies in online learning with delayed feedback are useful.
- Contributions:
 - Theoretical analysis.
 - A factored neural network forecaster that works well in practice.
- Learn more about theory, algorithms, experiments:

Come to Poster #160!