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Transfer Learning

Transfer Learning

Machine learning across domains of Non-IID distributions P 6= Q

How to design models that effectively bound the generalization error?

Model ModelRepresentation

P(x,y)≠Q(x,y)
2D Renderings Real Images

Source Domain Target Domain

f :x→ y f :x→ y
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Transfer Learning

Notations and Assumptions

Notations:

0-1 risk: errD(h) = E(x ,y)∼D1[h(x) 6= y ]

Empirical 0-1 risk: err
D̂

(h) , E
(x ,y)∼D̂1[h(x) 6= y ] = 1

n

∑n
i=1 1[h(xi ) 6= yi ]

Disparity: dispD(h′, h) , ED1[h′ 6= h],

Assumptions:
In unsupervised domain adaptation, there are two distinct domains, the source P and the
target Q. The learner is trained on:

A labeled sample P̂ = {(x si , y si )}ni=1 drawn from source distribution P.

An unlabeled sample Q̂ = {x ti }mi=1 drawn from target distribution Q.

Key Problem:
How to control target domain expected risk errQ(h)?
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Previous Theory and Algorithm

Previous Theory

In the seminal work [1], the H∆H-divergence was proposed to measure domain discrepancy
and control the target risk,:

dH∆H(P,Q) = sup
h,h′∈H

∣∣dispQ(h′, h)− dispP(h′, h)
∣∣ . (1)

[3] extended the H∆H-divergence to general loss functions, leading to the discrepancy
distance:

discL(P,Q) = sup
h,h′∈H

|EQL(h′, h)− EPL(h′, h)|, (2)

where L should be a bounded function satisfying symmetry and triangle inequality. Note that
many widely-used losses, e.g. margin loss, do not satisfy these requirements.
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Previous Theory and Algorithm

Previous Theory

Theorem

For every hypothesis h ∈ H,

errQ(h) ≤ errP(h) + dH∆H(P,Q) + λ, (3)

where λ = λ(H,P,Q) is the ideal combined loss:

λ = min
h∗∈H
{errP(h∗) + errQ(h∗)}. (4)

errP(h) depicts the performance of h on source domain.

dH∆H bounds the performance gap caused by domain shift.

λ quantifies the inverse of “adaptability” between domains.

The order of complexity term is O(
√
d/m +

√
d/n), when d is the VC-dimension of H.
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Previous Theory and Algorithm

Previous Algorithm

[2] sets a class of domain discriminator G to approximate function class
H∆H = {1[h′ 6= h]|h, h′ ∈ H} for computing dH∆H :

dH∆H ≈ sup
g∈G

(EQ1[g(x) = 0] + EP1[g(x) = 1])

[4] assumes that h and h′ should agree on source domain. Then they use L1-loss of two
classifiers’ probabilistic outputs on target domain to approximate dH∆H:

dH∆H ≈ sup
f ,f ′

EQ |f (x)− f ′(x)|

There are two crucial directions for improvement:

Generalization bound for classification with scoring functions and margin loss has not
been formally studied in the DA setting.

Computing the supremum requires an ergodicity over H∆H increases the difficulty of
optimization.
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MDD: Margin Disparity Discrepancy Definition

DD: Hypothesis-induced Discrepancy

Definition (Disparity Discrepancy)

Given a hypothesis space H and a specific classifier h∈H, the Disparity Discrepancy (DD)
induced by h′ ∈ H is defined by

dh,H(P,Q) = sup
h′∈H

∣∣EQ1[h′ 6= h]− EP1[h′ 6= h]
∣∣ . (5)

The supremum in the disparity discrepancy is taken only over the hypothesis space H and
thus can be optimized more easily.

Theorem

For every hypothesis h ∈ H,

errQ(h) ≤ errP(h) + dh,H(P,Q) + λ, (6)

where λ = λ(H,P,Q) is the ideal combined loss.
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MDD: Margin Disparity Discrepancy Definition

MDD: Towards an Informative Margin Theory

Notations for Multi-class Classification

Scoring Function:
f ∈ F : X × Y → R

Labeling Function induced by f :

hf : x 7→ arg max
y∈Y

f (x , y). (7)

Margin of a Scoring Function:

ρf (x , y) =
1

2
(f (x , y)−max

y ′ 6=y
f (x , y ′))

Margin Loss:

Φρ(x) =


0 ρ 6 x

1− x/ρ 0 6 x 6 ρ

1 x 6 0

1

0 ρ 1
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MDD: Margin Disparity Discrepancy Definition

MDD: Margin Disparity Discrepancy

Margin error: err
(ρ)
D (f ) = E(x,y)∼D [Φρ ◦ ρf (x , y)]

Margin disparity: disp
(ρ)
D (f ′, f ) , Ez∼Dx [Φρ ◦ ρf ′(x , hf (x))]

Definition (Margin Disparity Discrepancy)

With the definition of margin disparity, we define Margin Disparity Discrepancy (MDD) and its
empirical version by

d
(ρ)
f ,F (P,Q) , sup

f ′∈F

(
disp

(ρ)
Q (f ′, f )− disp

(ρ)
P (f ′, f )

)
,

d
(ρ)
f ,F (P̂, Q̂) , sup

f ′∈F

(
disp

(ρ)

Q̂
(f ′, f )− disp

(ρ)

P̂
(f ′, f )

)
.

(8)

The margin disparity discrepancy is well-defined since d
(ρ)
f ,F (P,P) = 0 and it satisfies the

nonnegativity and subadditivity.
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MDD: Margin Disparity Discrepancy Definition

MDD: Bounding the Target Expected Error

Theorem

Let F ⊆ RX×Y be a hypothesis set with Y = {1, · · · , k} and H ⊆ YX be the corresponding
Y-valued classifier class. For every scoring function f ∈ F ,

errQ(hf ) ≤ err
(ρ)
P (f ) + d

(ρ)
f ,F (P,Q) + λ, (9)

where λ = λ(ρ,F ,P,Q) is the ideal combined margin loss:

λ = min
f ∗∈H
{err(ρ)

P (f ∗) + err
(ρ)
Q (f ∗)}. (10)

This upper bound has a similar form with previous bound.

err
(ρ)
P (f ) depicts the performance of f on source domain.

MDD bounds the performance gap caused by domain shift.
λ quantifies the inverse of “adaptability”.

A new perspective for analyzing DA with respect to margin loss.
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MDD: Margin Disparity Discrepancy Generalization Bounds

MDD: Notations for Generalization Bounds

For deriving generalization bounds for MDD, we first introduce two function class:

Definition

Given a class of scoring functions F , Π1(F) is defined as

Π1F = {x 7→ f (x , y)
∣∣y ∈ Y, f ∈ F}, (11)

We introduce a new function class ΠHF that serves as a ”scoring” version of the symmetric
difference hypothesis space H∆H:

Definition

Given a class of scoring functions F and a class of the induced classifiers H, we define ΠHF as

ΠHF , {x 7→ f (x , h(x))|h ∈ H, f ∈ F}. (12)
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MDD: Margin Disparity Discrepancy Generalization Bounds

MDD: Notations for Generalization Bounds

Definition (Rademacher complexity)

Then, the empirical Rademacher complexity of F with respect to the sample D̂ is defined as

R̂
D̂

(F) = Eσ sup
f ∈F

1

n

n∑
i=1

σi f (zi ). (13)

where σi ’s are independent uniform random variables taking values in {−1,+1}. The
Rademacher complexity is

Rn,D(F) = E
D̂∼DnR̂D̂

(F). (14)

Definition (Covering Number)

(Informal) A covering number N2(τ,G) is the minimal number of L2 balls of radius τ > 0
needed to cover a class G of bounded functions g : X → R
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MDD: Margin Disparity Discrepancy Generalization Bounds

MDD: Rademacher Generalization Bounds

With the Rademacher complexity, we proceed to show that MDD can be well estimated
through finite samples.

Lemma

For any δ > 0, with probability 1− 2δ, the following holds simultaneously for any scoring
function f ∈ F ,

|d (ρ)
f ,F (P̂, Q̂)− d

(ρ)
f ,F (P,Q)|

≤2k

ρ
Rn,P(ΠHF) +

2k

ρ
Rm,Q(ΠHF) +

√
log 2

δ

2n
+

√
log 2

δ

2m
.

(15)

This lemma justifies that the expected MDD with respect to f can be uniformly approximated
by the empirical one computed on samples.
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MDD: Margin Disparity Discrepancy Generalization Bounds

MDD: Margin Theory for Domain Adaptation

Combining previous theorems, we obtain a Rademacher complexity based generalization bound
of the expected target error.

Theorem (Generalization Bound)

For any δ > 0, with probability 1− 3δ, we have the following uniform generalization bound for
all scoring functions f ∈ F ,

errQ(hf ) ≤err(ρ)

P̂
(f ) + d

(ρ)
f ,F (P̂, Q̂) + λ

+
2k2

ρ
Rn,P(Π1F) +

2k

ρ
Rn,P(ΠHF) + 2

√
log 2

δ

2n

+
2k

ρ
Rm,Q(ΠHF) +

√
log 2

δ

2m
,

(16)

where λ = λ(ρ,F ,P,Q) is the ideal combined margin loss.
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MDD: Margin Disparity Discrepancy Generalization Bounds

MDD: Rademacher Bound of Linear Classifier

We need to check the variation of Rn,D(ΠHF) with the growth of n. First, we include a
simple example of binary linear classifiers.

Theorem

Let S ⊆ X = {x ∈ Rs |‖x‖2 ≤ r} be a sample of size m and suppose

F =
{
f : X × {±1} → R

∣∣ f (x, y) = sgn(y) w · x, ‖w‖2 ≤ Λ
}
,

H =
{
h | h(x) = sgn(w · x), ‖w‖2 ≤ Λ}.

Then the empirical Rademacher complexity of ΠHF can be bounded as follows:

R̂S(ΠHF) ≤ 2Λr

√
d log em

d

m
,

where d is the VC-dimension of H.
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MDD: Margin Disparity Discrepancy Generalization Bounds

MDD: Generalization Bound with Covering Numbers

For more general settings, we derive bound based on covering number:

Theorem

Let F ⊆ RX×Y be a hypothesis set with Y = {1, · · · , k} and H ⊆ YX be the corresponding
Y-valued classifier class. Suppose Π1F is bounded in L2 by L. Fix ρ > 0. For all δ > 0, with
probability 1− 3δ the following inequality holds for all hypothesis f ∈ F :

errQ(hf ) ≤ err
(ρ)

P̂
(f ) + d

(ρ)
f ,F (P̂, Q̂) + λ+ 2

√
log 2

δ

2n

+

√
log 2

δ

2m
+

16k2
√
k

ρ
inf
ε≥0

{
ε+ 3

( 1√
n

+
1√
m

)
(∫ L

ε

√
logN2(τ,Π1F)dτ+L

∫ 1

ε/L

√
logN2(τ,Π1H)dτ

)}
.

(17)
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MDD: Theoretically Justified Algorithm

MDD: Theoretically Justified Algorithm

MDD is defined as the supremum over hypothesis space F .

Minimizing MDD is a minimax game.

Because the max-player is still too strong, we introduce a feature extractor ψ to make the
min-player stronger.

The overall optimization problem can be written as

min
f ,ψ

err
(ρ)

ψ(P̂)
(f ) + (disp

(ρ)

ψ(Q̂)
(f ∗, f )− disp

(ρ)

ψ(P̂)
(f ∗, f )),

f ∗ = max
f ′

(disp
(ρ)

ψ(Q̂)
(f ′, f )− disp

(ρ)

ψ(P̂)
(f ′, f )).

(18)

To enable representation-based domain adaptation, we need to learn new representation
ψ such that MDD is minimized.
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MDD: Theoretically Justified Algorithm

MDD: Theoretically Justified Algorithm

We design an adversarial learning algorithm to solve this problem.

We introduce an auxiliary classifier f ′ sharing the same hypothesis space with f .

min
f ,ψ

max
f ′

err
(ρ)

ψ(P̂)
(f ) + (disp

(ρ)

ψ(Q̂)
(f ′, f )− disp

(ρ)

ψ(P̂)
(f ′, f )), (19)

Multiclass margin loss causes the problem of gradient vanishing.

Denote by σ the softmax function, σj(z) = e
zj∑k

i=1 e
zi
, for j = 1, . . . , k.

We choose combined cross-entropy loss to approximate MDD:

E(P̂) = −E
(xs ,y s)∼P̂ log[σy s (f (ψ(x s)))],

D(P̂, Q̂) = E
x t∼Q̂ log[1− σhf (ψ(x t))(f ′(ψ(x t)))]

+ E
xs∼P̂ log[σhf (ψ(xs))(f ′(ψ(x s)))].

(20)
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MDD: Theoretically Justified Algorithm

MDD: Theoretically Justified Algorithm

We combine the two terms in D(P̂, Q̂) with a coefficient γ.

E(P̂) = −E
(xs ,y s)∼P̂ log[σy s (f (ψ(x s)))],

Dγ(P̂, Q̂) = E
x t∼Q̂ log[1− σhf (ψ(x t))(f ′(ψ(x t)))]

+ γE
xs∼P̂ log[σhf (ψ(xs))(f ′(ψ(x s)))].

(21)

γ is related to the margin of f ′ when the algorithm reaches equilibrium.

Theorem

(Informal) Assuming that there is no restriction on the choice of f ′ and γ > 1, the global
minimum of Dγ(P,Q) is P = Q. The value of σhf (f ′(·)) at equilibrium is γ/(1 + γ) and the
corresponding margin of f ′ is ρ = log γ.

We refer to γ = exp ρ as the margin factor.
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MDD: Theoretically Justified Algorithm

MDD: Theoretically Justified Algorithm

𝜓

Source
Risk
𝓔(𝑷%)

𝑓

MDD
𝓓𝜸 𝑷%,𝑸%

GRL

𝒚-

𝒚-′

One-hot

𝑓′

Min

Max

The practical optimization problem in the adversarial learning is stated as

min
f ,ψ
E(P̂) + ηDγ(P̂, Q̂),

max
f ′
Dγ(P̂, Q̂),

(22)
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Experiments

Results

Table: Accuracy (%) on Office-31 for unsupervised domain adaptation

Method A → W D → W W → D A → D D → A W → A Avg

ResNet-50 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1
JAN 85.4±0.3 97.4±0.2 99.8±0.2 84.7±0.3 68.6±0.3 70.0±0.4 84.3
GTA 89.5±0.5 97.9±0.3 99.8±0.4 87.7±0.5 72.8±0.3 71.4±0.4 86.5
MCD 88.6±0.2 98.5±0.1 100.0±.0 92.2±0.2 69.5±0.1 69.7±0.3 86.5
CDAN 94.1±0.1 98.6±0.1 100.0±.0 92.9±0.2 71.0±0.3 69.3±0.3 87.7

MDD (Proposed) 94.5±0.3 98.4±0.1 100.0±.0 93.5±0.2 74.6±0.3 72.2±0.1 88.9

Table: Accuracy (%) on Office-Home for unsupervised domain adaptation

Method Ar-Cl Ar-Pr Ar-Rw Cl-Ar Cl-Pr Cl-Rw Pr-Ar Pr-Cl Pr-Rw Rw-Ar Rw-Cl Rw-Pr Avg

ResNet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
JAN 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

CDAN 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
MDD (Proposed) 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
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Experiments

Analysis
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(b) Equilibrium on Source
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(c) Equilibrium on Target

Figure: Test accuracy and empirical values of σhf ◦ f
′ on D → A, where dashed lines indicate γ

γ+1 .

Margin γ 1 2 3 4 5 6

A → W 92.5 93.7 94.0 94.5 93.8 93.5
D → A 72.4 73.0 73.7 74.6 74.3 74.2

Avg on Office-31 87.6 88.1 88.5 88.9 88.7 88.6

Table: Accuracy (%) on Office-31 by different margins.
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Experiments
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(c) log 2-MDD
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Figure: Empirical values of the MDD computed by auxiliary classifier f ′.
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Summary

Summary

We extend previous theories to multiclass classification in domain adaptation, where
classifiers based on the scoring functions and margin loss are standard choices in
algorithm design.

We introduce Margin Disparity Discrepancy, a novel measurement with rigorous
generalization bounds, tailored to the distribution comparison with the asymmetric margin
loss, and to the minimax optimization for easier training.

Thanks!
Poster: tonight at Pacific Ballroom # 184.
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