

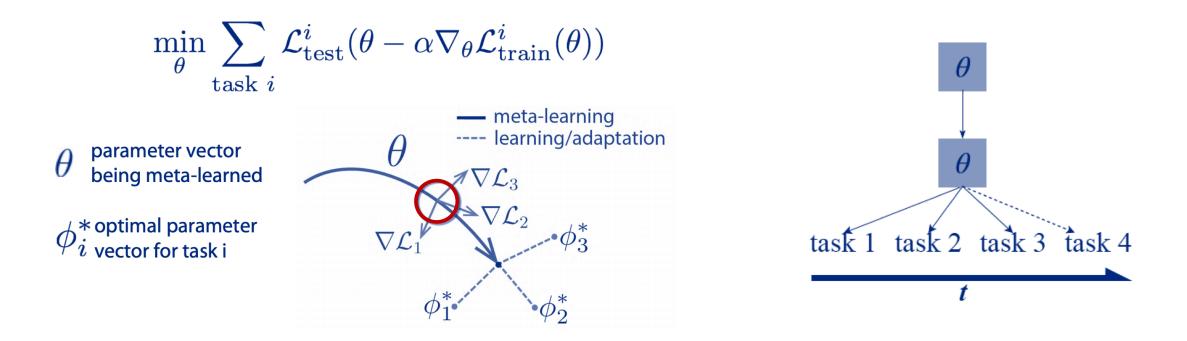
Hierarchically Structured Meta-learning

Huaxiu Yao^{1,2}, Ying Wei², Junzhou Huang¹, Zhenhui Li²

¹Pennsylvania State University ²Tencent AI Lab

Oral: Thu Jun 13th 09:35 -- 09:40 AM @ Room 103 Poster: Thu Jun 13th 06:30 -- 09:00 PM @ Pacific Ballroom #183

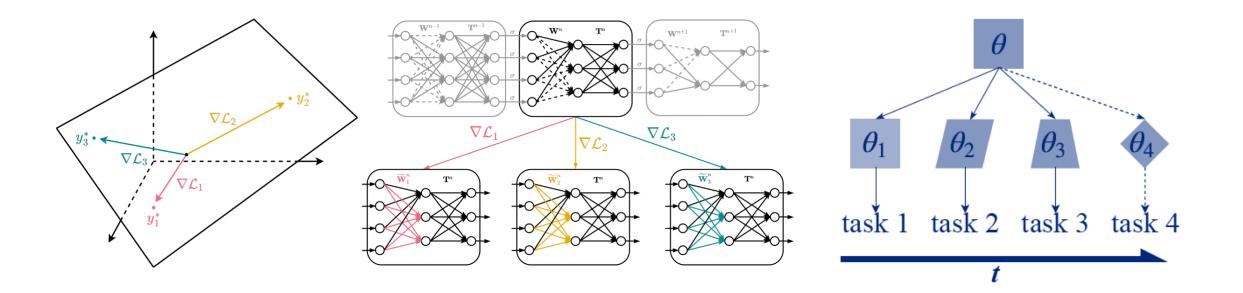
Is global initialization enough?



[1] Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017. http://people.eecs.berkeley.edu/~cbfinn/_files/metalearning_frontiers_2018_small.pdf

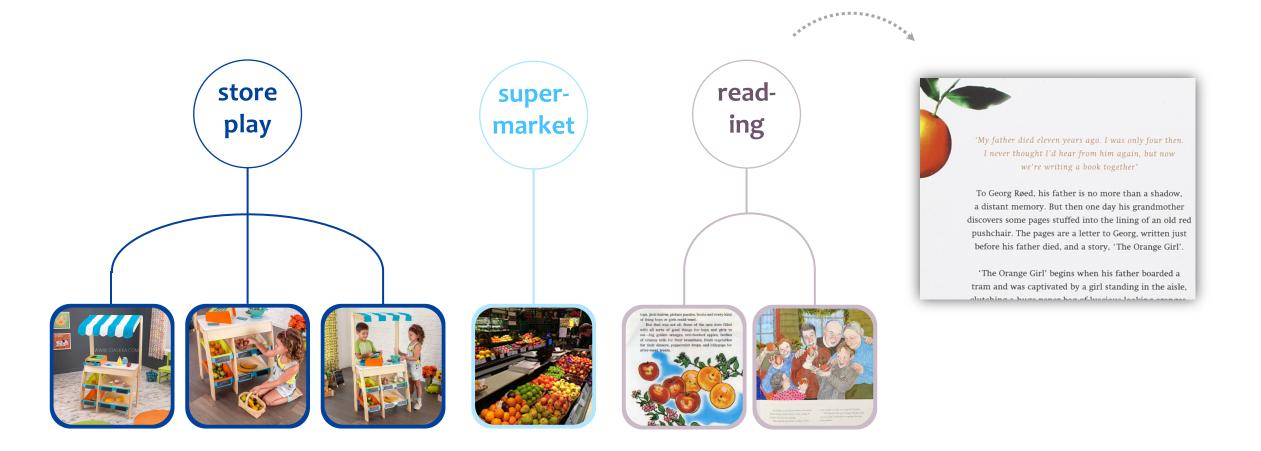
PennState

Should the initialization be tailored to each task?



[2] Lee, Yoonho, and Seungjin Choi. "Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace." International Conference on Machine Learning. 2018.

PennState



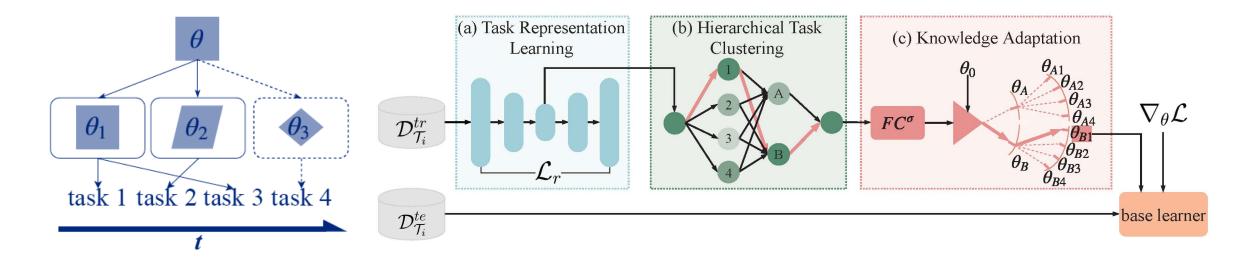
[3] Gershman, Samuel J., David M. Blei, and Yael Niv. "Context, learning, and extinction." Psychological review 117.1 (2010): 197.
[4] Gershman, Samuel J., et al. "Statistical computations underlying the dynamics of memory updating." PLoS computational biology 10.11 (2014): e1003939.

PennState

Our Solution: Hierarchically Structured Meta-learning

Balance between generalization and customization

- Organize tasks by hierarchical clustering
- Adapt the global initialization to each cluster of tasks



PennState

Overall optimization problem

$$\min_{\Theta} \sum_{i=1}^{N_t} \mathcal{L}(f_{\theta_{0i} - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_{\mathcal{T}_i}^{tr})}, \mathcal{D}_{\mathcal{T}_i}^{te}) + \xi \mathcal{L}_r(\mathcal{D}_{\mathcal{T}_i}^{tr}),$$

Extension to continual adaptation

- Incrementally increase the clusters as tasks sequentially arrive.
- Criterion for adding a cluster—evaluate the average loss over Q epochs

$$\bar{\mathcal{L}}_{new} > \mu \bar{\mathcal{L}}_{old}$$

Analysis

- For task $\mathcal{T}_i \sim \mathcal{E}$, training and testing samples are i.i.d. drawn from \mathcal{S}_i
- The initialization of HSML (K clusters) can be represented as $\theta_{0t} = \sum_{k=1}^{K} \widehat{B}_k \theta_0$
- According to [5], the assumptions are $\mathcal{L} \in [0, 1]$ is η -smooth and has a ρ -Lipschitz Hessian, step size at the u-step $\alpha_u = c/u$ satisfying $c \leq \min\{\frac{1}{\eta}, \frac{1}{4(2\eta \ln U)^2}\}$ with total steps $U = n^{tr}$.
- The generalization of base learner $f_{\theta_{\mathcal{T}_i}}$ is bounded by $\epsilon(\mathcal{S}_i, \theta_0)$, where

$$\epsilon(\mathcal{S}_i, \theta_0) = \mathcal{O}\left(\left(1 + \frac{1}{c\hat{\gamma}^-}\right)\hat{R}_{\mathcal{D}_{\mathcal{T}_t}^{tr}}(\theta_{0t})^{\frac{c\hat{\gamma}^+}{1+c\hat{\gamma}^+}} \frac{1}{(n^{tr})^{\frac{1}{1+c\hat{\gamma}^+}}}\right)$$

- MAML can be regarded as a special case of HSML, i.e., $\forall k, \hat{B}_k = I$
- After proving $\exists \{\hat{\hat{B}}_k\}_{k=1}^K$, s.t., $\hat{R}_{\mathcal{D}_{\mathcal{T}_t^{tr}}}(\theta_{0t}) \leq \hat{R}_{\mathcal{D}_{\mathcal{T}_t^{tr}}}(\theta_0)$, we conclude that HSML achieves a tighter generalization bound than MAML

[5] Kuzborskij, Ilja, and Christoph Lampert. "Data-Dependent Stability of Stochastic Gradient Descent." International Conference on Machine Learning. 2018.

Data

- 4 sync family functions—Sin, Line, Cubic, Quadratic
- K-shot: K samples are used as training (each task)

Base model

• 2 layers FC with 40 neurons each

Quantitative results

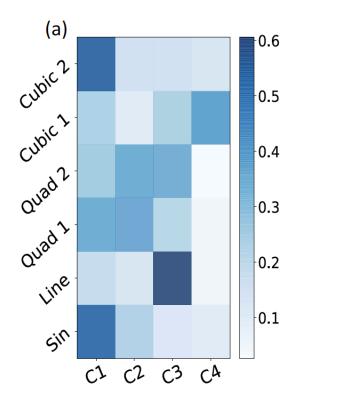
• Comparison on regression MSEs

• Comparison in the continual adaptation scenario

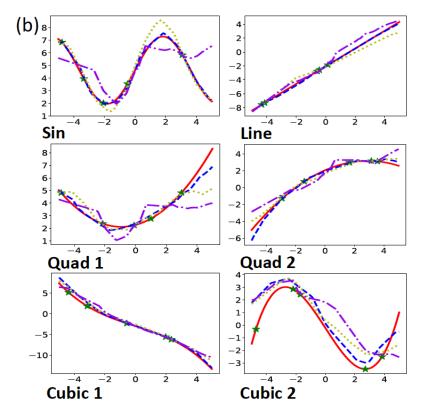
			1.3 HSML-S (2C) Cubic is added			
Method	5-shot	10-shot	1.2			
Global shared (MAML)	2.205±0.121	0.761 <u>+</u> 0.06 8	Lo 1.1 HSML-D Uuadratic is added V 0.8 0.7 0.7			
Task-specific (MUMOMAML[6])	1.096±0.085	0.256±0.02 8				
Our method (HSML)	0.856±0.073	0.161±0.021	10000 20000 30000 40000 50000 60000 70000 Epoch			
			ModelHSML-S (2C)HSML-S (10C)HSML-D			
			MSE \pm 95% CI 0.933 \pm 0.074 0.889 \pm 0.071 0.869 \pm 0.0			

Qualitive results

• Cluster assignment interpretation



Regression results



- Ground Truth ★ Selected Point - • MAML•••• MUMOMAML - - HSML 10

Data

- 4 image classification datasets—Bird, Texture, Aircraft, Fungi
- 5-way, 1-shot

Base model

• a convolutional network with 4 convolution blocks

Quantitative results

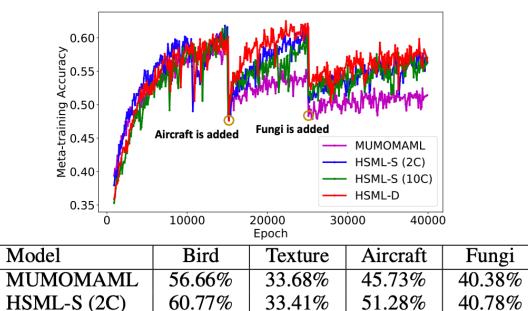
• Comparison on accuracy

Method	Bird	Textu re	Aircr aft	Fungi
Global shared	53•94	31.66	51.37	42 . 12
(MAML)	%	%	%	%
Task-specific (56.82	33.81	53 . 14	42 . 22
MUMOMAML[6])	%	%	%	%
Our method	60.98	35.01%	57 . 38	44.02
(HSML)	%		%	%

• Comparison in the continual adaptation scenario

59.16%

61.16%



34.48%

34.53%

PennState

Tencent AI Lab

[6] Vuorio, Risto, Shao-Hua Sun, Hexiang Hu, and Joseph J. Lim. "Toward Multimodal Model-Agnostic Meta-Learning." arXiv preprint arXiv:1812.07172 (2018).

HSML-S(10C)

HSML-D

40.56%

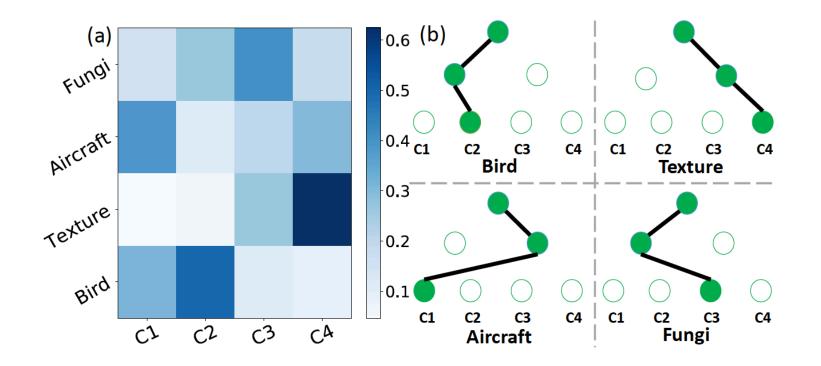
41.66%

52.30%

54.50%

Qualitive results

• Cluster assignment interpretation



PennState

Tencent Al Lab

20

- HSML simultaneously customizes task knowledge and preserves knowledge generalization via the hierarchical clustering structure.
- Experiments demonstrate the effectiveness and interpretability of HSML in both toy regression and few-shot classification problems.

THANK YOU

Oral: Thu Jun 13th 09:35 -- 09:40 AM @ Room 103 Poster: Thu Jun 13th 06:30 -- 09:00 PM @ Pacific Ballroom #183