Geometric losses for distributional learning

Arthur $Mensch^{(1)}$, Mathieu Blondel⁽²⁾, Gabriel Peyré⁽¹⁾

⁽¹⁾ École Normale Supérieure, DMA Centre National pour la Recherche Scientifique Paris, France

⁽²⁾ NTT Communication Science Laboratories Kyoto, Japan

June 12, 2019

3 Geometric softmax from Sinkhorn negentropies

Contribution: losses and links for continuous metrized output

Handling output geometry

• Link and loss with cost between classes

 $C: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$

 \bullet Output distribution over continuous space ${\cal Y}$

Contribution: losses and links for continuous metrized output

Handling output geometry

• Link and loss with cost between classes

 $C: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$

 \bullet Output distribution over continuous space ${\cal Y}$

New geometric losses and associated link functions:

1 Construction from duality between distributions and scores

Contribution: losses and links for continuous metrized output

Handling output geometry

• Link and loss with cost between classes

 $C:\mathcal{Y}\times\mathcal{Y}\to\mathbb{R}$

 \bullet Output distribution over continuous space ${\cal Y}$

New geometric losses and associated link functions:

- 1 Construction from duality between distributions and scores
- 2 Need: Convex functional on distribution space
- Provided by regularized optimal transport

Background: learning with a cost over outputs ${\mathcal Y}$

Cost augmentation of losses^{1,2}:

- Convex cost-aware loss $L_c: [1, d] imes \mathbb{R}^d o \mathbb{R}$
- \triangle Undefined link functions: $\mathbb{R}^d \to \triangle^d$: what to predict at test time ?

¹Ioannis Tsochantaridis et al. "Large margin methods for structured and interdependent output variables". In: *JMLR* (2005). ²Kevin Gimpel and Noah A Smith. "Softmax-margin CRFs: Training log-linear models with cost functions". In: *NAACL*. 2010.

Background: learning with a cost over outputs ${\mathcal Y}$

Cost augmentation of losses^{1,2}:

• Convex cost-aware loss $L_c: [1, d] imes \mathbb{R}^d o \mathbb{R}$

 \triangle Undefined link functions: $\mathbb{R}^d \to \triangle^d$: what to predict at test time ?

Use a Wasserstein distance between output distributions³:

- Ground metric C defines a distance W_C between distributions
- Prediction with a softmax link

 $\ell(\alpha, f) \triangleq W_C(\operatorname{softmax}(f), \alpha))$

▲ Non-convex loss and costly to compute

²Kevin Gimpel and Noah A Smith. "Softmax-margin CRFs: Training log-linear models with cost functions". In: NAACL. 2010.

³Charlie Frogner et al. "Learning with a Wasserstein loss". In: NIPS. 2015.

¹Ioannis Tsochantaridis et al. "Large margin methods for structured and interdependent output variables". In: JMLR (2005).

2 Fenchel-Young losses for distribution spaces

3 Geometric softmax from Sinkhorn negentropies

Primal histograms $\triangle^3, \|\cdot\|_1$

Primal histograms $riangle^3, \|\cdot\|_1$

Non constrained output

Dual scores $\mathbb{R}^3, \|\cdot\|_{\infty}$

Fenchel-Young losses⁴⁵: Convex function $\Omega : \triangle^d \to \mathbb{R}$

⁵Mathieu Blondel et al. "Learning Classifiers with Fenchel-Young Losses: Generalized Entropies, Margins, and Algorithms". In: AISTATS. 2019.

Arthur Mensch, Mathieu Blondel, Gabriel Peyré

⁴ John C. Duchi et al. "Multiclass Classification, Information, Divergence, and Surrogate Risk". In: Annals of Statistics (2018).

Fenchel-Young losses⁴⁵: Convex function $\Omega : \triangle^d \to \mathbb{R}$ and conjugate $\Omega^{\star}(f) = \min_{\alpha \in \triangle^d} \Omega(\alpha) - \langle \alpha, f \rangle$

⁵Mathieu Blondel et al. "Learning Classifiers with Fenchel-Young Losses: Generalized Entropies, Margins, and Algorithms". In: AISTATS. 2019.

Arthur Mensch, Mathieu Blondel, Gabriel Peyré

⁴ John C. Duchi et al. "Multiclass Classification, Information, Divergence, and Surrogate Risk". In: Annals of Statistics (2018).

Fenchel-Young losses⁴⁵: Convex function $\Omega : \triangle^d \to \mathbb{R}$ and conjugate $\Omega^{\star}(f) = \min_{\alpha \in \triangle^d} \Omega(\alpha) - \langle \alpha, f \rangle \qquad \ell_{\Omega}(\alpha, f) = \Omega(\alpha) + \Omega^{\star}(f) - \langle \alpha, f \rangle \ge 0$

⁵Mathieu Blondel et al. "Learning Classifiers with Fenchel-Young Losses: Generalized Entropies, Margins, and Algorithms". In: AISTATS. 2019.

Arthur Mensch, Mathieu Blondel, Gabriel Peyré

5/16

⁴ John C. Duchi et al. "Multiclass Classification, Information, Divergence, and Surrogate Risk". In: Annals of Statistics (2018).

Fenchel-Young losses⁴⁵: Convex function $\Omega : \triangle^d \to \mathbb{R}$ and conjugate $\Omega^*(f) = \min_{\alpha \in \triangle^d} \Omega(\alpha) - \langle \alpha, f \rangle \qquad \ell_{\Omega}(\alpha, f) = \Omega(\alpha) + \Omega^*(f) - \langle \alpha, f \rangle \ge 0$

Define link functions between dual and primal

$$\nabla\Omega(\alpha) = \operatorname*{argmin}_{f \in \mathbb{R}^d} \ell_{\Omega}(\alpha, f) \qquad \qquad \nabla\Omega^{\star}(f) = \operatorname*{argmin}_{\alpha \in \triangle^d} \ell_{\Omega}(\alpha, f)$$

⁴ John C. Duchi et al. "Multiclass Classification, Information, Divergence, and Surrogate Risk". In: Annals of Statistics (2018).
 ⁵ Mathieu Blondel et al. "Learning Classifiers with Fenchel-Young Losses: Generalized Entropies, Margins, and Algorithms". In: AISTATS. 2019.
 Arthur Mensch. Mathieu Blondel, Gabriel Peyré Geometric Losses for distributional learning 5 / 16

Discrete canonical example: Shannon entropy

$$\Omega(\alpha) = -H(\alpha) = \sum_{i=1}^{d} \alpha_i \log \alpha_i$$

$$\Omega^*(f) = \operatorname{logsumexp}(f)$$

Discrete canonical example: Shannon entropy

6/16

Discrete canonical example: Shannon entropy

Not defined on continuous distributions, cost-agnostic

Arthur Mensch, Mathieu Blondel, Gabriel Peyré Geometric losses for distributional learning

6/16

3 Geometric softmax from Sinkhorn negentropies

Sinkhorn entropies from regularized optimal transport

Self regularized optimal transportation distance:

$$\Omega_{C}(\alpha) = -\frac{1}{2} \mathsf{OT}_{C,\varepsilon=2}(\alpha,\alpha) = -\max_{f\in\mathcal{C}(\mathcal{Y})} \langle \alpha, f \rangle - \log \langle \alpha \otimes \alpha, \exp(\frac{f\oplus f-C}{2}) \rangle$$

Sinkhorn entropies from regularized optimal transport

Self regularized optimal transportation distance:

$$\Omega_{C}(\alpha) = -\frac{1}{2} \mathsf{OT}_{C,\varepsilon=2}(\alpha,\alpha) = -\max_{f\in\mathcal{C}(\mathcal{Y})} \langle \alpha, f \rangle - \log \langle \alpha \otimes \alpha, \exp(\frac{f \oplus f - C}{2}) \rangle$$
Continuous convex

Sinkhorn entropies from regularized optimal transport

Self regularized optimal transportation distance:

$$\Omega_{C}(\alpha) = -\frac{1}{2} \mathsf{OT}_{C,\varepsilon=2}(\alpha,\alpha) = -\max_{f \in \mathcal{C}(\mathcal{Y})} \langle \alpha, f \rangle - \log \langle \alpha \otimes \alpha, \exp(\frac{f \oplus f - C}{2}) \rangle$$
Continuous convex
$$Special cases$$

$$\varepsilon \to \infty: \text{ MMD autocorrelation}$$

$$C = \begin{pmatrix} 0 & \infty & \dots \\ \infty & 0 & \ddots \\ \vdots & \ddots & \ddots \end{pmatrix}$$
Shannon entropy
Gini index
$$\pi^{*}$$

Dual mapping from Sinkhorn negentropy

Sinkhorn entropy:
$$\Omega(\alpha) = -\max_{f \in \mathcal{C}(\mathcal{Y})} \langle \alpha, f \rangle - \log \langle \alpha \otimes \alpha, e^{\frac{f \oplus f - C}{2}} \rangle$$

8/16

Returning to primal: geometric softmax

$$\Omega^* = \operatorname{\mathsf{g-logsumexp}}: f \mapsto -\log \min_{\alpha \in \mathcal{M}_1^+(\mathcal{Y})} \langle \alpha \otimes \alpha, \, \exp(-\frac{f \oplus f + C}{2}) \rangle$$

$$\nabla \Omega^* =$$
geometric-softmax.

Arthur Mensch, Mathieu Blondel, Gabriel Peyré

Minimizes a simple quadratic.

Geometric losses for distributional learning

Training with the geometric logistic loss:

 $\ell_C(\alpha, f) = \text{geometric-LSE}_C(f) + \text{sinkhorn-negentropy}_C(\alpha) - \langle \alpha, f \rangle$

Tractable discrete \mathcal{Y} **:** use mirror descent/L-BFGS

- $10\times$ as costly as a softmax
- Backpropagation: $\nabla \Omega^{\star} = \text{geometric-softmax}$

Continuous case:

• Frank-Wolfe scheme, adding one Dirac at each iteration

Properties of the geometric-softmax

• $\nabla \Omega^*$ returns from Sinkhorn potentials: $\nabla \Omega^* \circ \nabla \Omega = \mathsf{Id}$

Properties of the geometric-softmax

- $\nabla \Omega^{\star}$ returns from Sinkhorn potentials: $\nabla \Omega^{\star} \circ \nabla \Omega = \mathsf{Id}$
- $\nabla \Omega \circ \nabla \Omega^*$ projects f onto \mathcal{F} the set of symmetric Sinkhorn potentials
- Sparse $\nabla \Omega^*(f) \leftarrow$ minimization on the simplex

Properties of the geometric-softmax

Consistent learning with the geometric logistic loss

Bregman divergence from Sinkhorn negentropy:

$$D_g(\alpha|\beta) = \Omega(\alpha) - \Omega(\beta) - \langle \nabla \Omega(\alpha), \, \alpha - \beta \rangle.$$

Consistent learning with the geometric logistic loss

Bregman divergence from Sinkhorn negentropy:

$$D_g(\alpha|\beta) = \Omega(\alpha) - \Omega(\beta) - \langle \nabla \Omega(\alpha), \, \alpha - \beta \rangle.$$

Sample distribution $(x_i, \alpha_i)_i \in \mathcal{X} \times \mathcal{M}_1^+(\mathcal{Y}).$

Consistent learning with the geometric logistic loss

Bregman divergence from Sinkhorn negentropy:

$$D_g(\alpha|\beta) = \Omega(\alpha) - \Omega(\beta) - \langle \nabla \Omega(\alpha), \alpha - \beta \rangle.$$

Sample distribution $(x_i, \alpha_i)_i \in \mathcal{X} \times \mathcal{M}_1^+(\mathcal{Y}).$

Fisher consistency: $\min_{\beta: \mathcal{X} \to \mathcal{M}_{1}^{+}(\mathcal{Y})} \mathbb{E} \left[D_{g} \left(\alpha, \beta \left(x \right) \right) \right] = \min_{g: \mathcal{X} \to \mathcal{C}(\mathcal{Y})} \mathbb{E} \left[\ell_{g} \left(\alpha, \nabla \Omega^{*} \left(g \left(x \right) \right) \right) \right]$

3 Geometric softmax from Sinkhorn negentropies

Applications: variational auto-encoder

Goal: Generate nearly 1D distribution in 2D images

- Dataset: Google Quickdraw
- Traditional sigmoid activation layer
- \leftarrow replaced by geometric softmax

Applications: variational auto-encoder

Goal: Generate nearly 1D distribution in 2D images

- Dataset: Google Quickdraw
- Traditional sigmoid activation layer
- $\leftarrow\,$ replaced by geometric softmax
 - Deconvolutional effect
 - Cost-informed non-linearity

Applications: variational auto-encoders

Reconstruction

Generation

softmax

g-softmax

Better defined generated images

Arthur Mensch, Mathieu Blondel, Gabriel Peyré

Geometric losses for distributional learning

Conclusion

Geometric softmax:

- New loss and projector onto output probabilities
- Discrete/continuous, aware of a cost between outputs
- Fenchel duality in Banach spaces + regularized optimal transport
- Application in VAE and ordinal regression

Conclusion

Geometric softmax:

- New loss and projector onto output probabilities
- Discrete/continuous, aware of a cost between outputs
- Fenchel duality in Banach spaces + regularized optimal transport
- Application in VAE and ordinal regression

Future directions:

- How to improve computation methods (continuous FW)
- Geometric logisitic loss in super resolution⁶

⁶Nicholas Boyd et al. "DeepLoco: Fast 3D localization microscopy using neural networks". In: *BioRxiv* (2018), p. 267096.

Mathieu Blondel

Gabriel Peyré

Poster # 179