Fast Incremental von Neumann Graph Entropy Computation: Theory, Algorithm, and Applications

Pin-Yu Chen IBM Research AI

joint work with Lingfei Wu (IBM Research AI) Sijia Liu (IBM Research AI) Indika Rajapakse (Univ. Michigan Ann Arbor)

Poster: Tuesday 6:30-9:00 pm, Pacific Ballroom #265

June 10, 2019

Graph as a Data Representation

P.-Y. Chen

ICML 2019

Information-Theoretic Measures between Graphs

- Structural reducibility of multilayer networks (unsupervised learning)
- De Domenico et al., "Structural reducibility of multilayer networks." Nature Communications 6 (2015).

Von Neumann Graph Entropy (VNGE): Introduction

- Quantum information theory: Φ is a $n \times n$ density matrix that is symmetric, positive semidefinite, and trace(Φ) = 1 $\{\lambda_i\}_{i=1}^n$: eigenvalues of Φ
- Von Neumann entropy $H = -\text{trace}(\Phi \ln \Phi) = -\sum_{i:\lambda_i>0} \lambda_i \ln \lambda_i$ \rightarrow Shannon entropy over eigenspectrum $\{\lambda_i\}_{i=1}^n$, since $\sum_i \lambda_i = 1$
 - \Rightarrow Generally requires ${\cal O}(n^3)$ computation complexity for H
- Graph $G = (\mathcal{V}, \mathcal{E}, \mathbf{W}) \in \mathcal{G}$: undirected weighted graphs with nonnegative edge weights. G has $|\mathcal{V}| = n$ nodes and $|\mathcal{E}| = m$ edges.
- L = D W: combinatorial graph Laplacian matrix of G.
 D = diag({λ_i}): diagonal degree matrix. [W]_{ij} = w_{ij}: edge weight.
- Von Neumann graph entropy (VNGE): $\Phi = \mathbf{L}_{\mathcal{N}} = c \cdot \mathbf{L}$, where $c = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$

$$\mathbf{z} \equiv \frac{1}{\mathsf{trace}(\mathbf{L})} \equiv \frac{1}{\sum_{i \in \mathcal{V}} d_i} \equiv \frac{1}{2\sum_{(i,j) \in \mathcal{E}} w_{ij}}$$

• $H \leq \ln(n-1)$, "=" when G is a complete graph with identical edge weight

Braunstein, Samuel L., Sibasish Ghosh, and Simone Severini. "The Laplacian of a graph as a density matrix: a basic combinatorial approach to separability of mixed states." Annals of Combinatorics 10.3 (2006): 291-317. Passerini, Filippo, and Simone Severini. "The von Neumann entropy of networks." (2008).

Von Neumann Graph Entropy (VNGE): Introduction

 VNGE characterizes structural complexity of a graph and enables computation of Jensen-Shannon distance (JSdist) between graphs.

• Applications in network learning, computer vision and data science:

Structural reducibility of multilayer networks (hierarchical clustering) De Domenico et al., "Structural reducibility of multilayer networks." Nature Communications 6 (2015).

Opth-analysis for image processing

Han, Lin, et al. "Graph characterizations from von Neumann entropy." Pattern Recognition Letters 33.15 (2012): 1958-1967.

Bai, Lu, and Edwin R. Hancock. "Depth-based complexity traces of graphs." Pattern Recognition 47.3 (2014): 1172-1186.

Network-ensemble comparison via edge rewiring Li, Zichao, Peter J. Mucha, and Dane Taylor. "Network-ensemble comparisons with stochastic rewiring and von Neumann entropy." SIAM Journal on Applied Mathematics, 78(2): 897920 (2018).

Structure-function analysis in genetic networks

Liu et al., "Dynamic network analysis of the 4D nucleome." bioRxiv, pp. 268318 (2018).

• High consistency with classical Shannon graph entropy that is defined as a probability distribution of a function on subgraphs of G.

Anand, Kartik, Ginestra Bianconi, and Simone Severini. "Shannon and von Neumann entropy of random networks with heterogeneous expected degree." Physical Review E 83.3 (2011): 036109.

Anand, Kartik, and Ginestra Bianconi. "Entropy measures for networks: Toward an information theory of complex topologies." Physical Review E 80.4 (2009): 045102.

Li, Angsheng, and Yicheng Pan. "Structural Information and Dynamical Complexity of Networks." IEEE Transactions on Information Theory 62.6 (2016): 3290-3339.

Outline

- The main challenge of exact VNGE computation: it generally requires cubic complexity $O(n^3)$ for obtaining the full eigenspectrum \rightarrow NOT scalable to large graphs
- Our solution: **FINGER**, a scalable and provably asymptotically correct approximate computation framework of VNGE
- FINGER supports two different data modes: batch and online

(a) Batch mode: O(n+m)

(b) Online mode: $O(\Delta n + \Delta m)$

- New applications:
 - Anomaly detection in evolving Wikipedia hyperlink networks
 - Bifurcation detection of cellular networks during cell reprogramming
 - Synthesized denial of service attack detection in router networks

P.-Y. Chen

Efficient VNGE Computation via FINGER

- Recall $H = -\sum_{i=1}^n \lambda_i \ln \lambda_i \Rightarrow O(n^3)$ cubic complexity
- FINGER enables fast and incremental computation of *H* with asymptotic approximation guarantee

Lemma (Quadratic approximation of H)

The quadratic approximation of the von Neumann graph entropy H via Taylor expansion is equivalent to $Q = 1 - c^2 (\sum_{i \in \mathcal{V}} d_i^2 + 2 \cdot \sum_{(i,j) \in \mathcal{E}} w_{ij}^2)$

- d_i : degree (sum of edge weights) of node i
- w_{ij} : edge weight of edge (i, j)

•
$$c = \frac{1}{2\sum_{(i,j)\in\mathcal{E}} w_{ij}}$$

- O(n+m) linear complexity. $|\mathcal{V}| = n$, $|\mathcal{E}| = m$.
- Q can be incremental updated given graph changes $\Delta G \Rightarrow O(\Delta n + \Delta m)$ complexity

Approximate VNGE with Asymptotic Guarantees

- Let λ_{\max} (λ_{\min}) be the largest (smallest) positive eigenvalue in $\{\lambda_i\}$
- Approx. VNGE for *batch* graph sequence: $\widehat{H}(G) = -Q \ln \lambda_{\max}$
- Approx. VNGE for online graph sequence: $\hat{H}(G) = -Q \ln(2c \cdot d_{\max})$
- Relation: $\widetilde{H} \leq \widehat{H} \leq H$

Theorem $(o(\ln n)$ approximation error with balanced eigenspectrum)

If the number of positive eigenvalues $n_+ = \Omega(n)$ and $\lambda_{\min} = \Omega(\lambda_{\max})$, the scaled approximation error (SAE) $\frac{H - \widehat{H}}{\ln n} \to 0$ and $\frac{H - \widetilde{H}}{\ln n} \to 0$ as $n \to \infty$.

 $f(n) = o(h(n)) \text{ and } f(n) = \Omega(h(n)) \text{ mean } \lim_{n \to \infty} \frac{f(n)}{h(n)} = 0, \text{ and } \lim \sup_{n \to \infty} |\frac{f(n)}{h(n)}| > 0, \text{ respectively.}$

• Computing λ_{\max} only requires O(n+m) operations via power iteration $\Rightarrow O(n+m)$ linear complexity for \hat{H} .

Theorem (Incremental update of \widetilde{H} with $O(\Delta n + \Delta m)$ complexity) The VNGE $\widetilde{H}(G \oplus \Delta G)$ can be updated by $\widetilde{H}(G \oplus \Delta G) = F(\widetilde{H}(G), \Delta G)$ P-Y. Chen ICML 2019 June 10, 2019 8/16

Numerical Validation on Synthetic Random Graphs

Figure: Scaled approximation error (SAE) and computation time reduction ratio

- scaled approximation error (SAE) $= rac{H H_{ extsf{approx}}}{\ln n}$
- computation time reduction ratio = $\frac{Time_H Time_{H_{approx}}}{Time_H}$
- \bullet almost 100% speed-up ($O(n^3)$ v.s. $O(n+m) \mbox{)}$
- approximation error decreases as average degree increases
- regular (random) graphs have smaller (larger) approximation error

Jensen-Shannon Distance between Graphs using FINGER

- Two graphs G and \widetilde{G} of the same node set $\mathcal{V}.$
- KL divergence $D_{KL}(G|\widetilde{G}) = \text{trace}(\mathbf{L}_{\mathcal{N}}(G) \cdot [\ln \mathbf{L}_{\mathcal{N}}(G) \ln \mathbf{L}_{\mathcal{N}}(\widetilde{G})])$ (not symmetric)
- Let $\overline{G} = \frac{G \oplus \widetilde{G}}{2}$ denote the averaged graph of G and \widetilde{G} , where $\mathbf{L}_{\mathcal{N}}(\overline{G}) = \frac{\mathbf{L}_{\mathcal{N}}(G) + \mathbf{L}_{\mathcal{N}}(\widetilde{G})}{2}$.
- The Jensen-Shannon divergence is defined as $\text{DIV}_{JS}(G, \widetilde{G}) = \frac{1}{2}D_{KL}(G|\widetilde{G}) + \frac{1}{2}D_{KL}(\widetilde{G}|G) = H(\overline{G}) \frac{1}{2}[H(G) + H(\widetilde{G})]$ (symmetric)
- The Jensen-Shannon distance is defined as $JSdist(G, \widetilde{G}) = \sqrt{DIV_{JS}}$, which is proved to be a valid distance metric. Briet, Jop, and Peter Harremos. "Properties of classical and quantum Jensen-Shannon divergence." Physical review A 79.5 (2009): 052311.

FINGER Algorithms for Jensen-Shannon Distance

- Jensen-Shannon distance computation via FINGER-Â (batch mode):
 Input: Two graphs G and G
 Output: JSdist(G, G)
 - 1. Obtain $\overline{G} = \frac{G \oplus \widetilde{G}}{2}$ and compute $\widehat{H}(G)$, $\widehat{H}(\widetilde{G})$, and $\widehat{H}(\overline{G})$ via FINGER (Fast)
 - 2. $\mathsf{JSdist}(G, \widetilde{G}) = \widehat{H}(\overline{G}) \frac{1}{2}[\widehat{H}(G) + \widehat{H}(\widetilde{G})]$

 $\Rightarrow O(n+m)$ complexity inherited from \widehat{H}

Jensen-Shannon distance computation via FINGER-H̃ (online mode): Input: Graph G and its changes ΔG, Approx VNGE H̃(G) of G Output: JSdist(G, G ⊕ ΔG) 1. compute H̃(G ⊕ ΔG/2) and H̃(G ⊕ ΔG) via FINGER (Inc.) 2. JSdist(G, G ⊕ ΔG)= H̃(G ⊕ ΔG/2) - ½[H̃(G) + H̃(G ⊕ ΔG)] ⇒ O(Δn + Δm) complexity inherited from H̃ (√√) approximation of a form the final form H̃

• $o(\sqrt{\ln n})$ approximation guarantee of JSdist via FINGER (see paper)

Application I: Anomaly Detection in Wikipedia Networks

- Compare dissimilarity metrics of consecutive graphs via FINGER and other baseline methods:
 - DeltaCon & RMD
 - 2 λ distance (6 leading eigenvalues) & graph edit distance (GED)
 - VNGE-NL & VNGE-GL
 - Ø divergence based on degree distribution

Table: Summary of four evolving Wikipedia hyperlink networks

Datasets (graph sequence)	$\operatorname{maximum} \#$ of nodes	$\operatorname{maximum} \#$ of edges	# of graphs
Wikipedia - simple English (sEN)	100,312 (0.1 M)	746,086 (0.7 M)	122
Wikipedia - English (EN)	1,870,709 (1.8 M)	39,953,145 (39 M)	75
Wikipedia - French (FR)	2,212,682 (2.2 M)	24,440,537 (24 M)	121
Wikipedia - German (GE)	2,166,669 (2.1 M)	31,105,755 (31 M)	127

- Node: article. Edge: existence of hyperlinks. Graph: monthly hyperlink network.
- Anomaly proxy : vextex/edge overlapping dissimilarity VEO $(G, \widetilde{G}) = 1 - \frac{2(|\mathcal{V} \cap \widetilde{\mathcal{V}}| + |\mathcal{E} \cap \widetilde{\mathcal{E}}|)}{|\mathcal{V}| + |\widetilde{\mathcal{V}}| + |\mathcal{E}| + |\widetilde{\mathcal{E}}|}$

Application I: Anomaly Detection in Wikipedia Networks

Table: Computation time (sec.) and Pearson correlation coefficient (PCC) of anomaly proxy and different methods. FINGER attains the best PCC and efficiency.

Data	sets	FINGER	FINGER	DeltaCon	RMD	λ dist.	λ dist.	GED	VNGE	VNGE
Wiki	PCC	0 5503	0.3382	0 1506	0 1718	0 1871	0.0005	0.2036	0.2065	0.2462
	time	26.065	0.3302	44.052	44.052	150.16	00.0055	1 666	12 574	20 402
(SEIV)	time	20.005	0.7450	44.952	44.952	150.10	99.905	1.000	13.374	30.403
Wiki	PCC	0.9029	0.5583	-0.2411	-0.1167	-0.0175	-0.1759	-0.3429	-0.0442	0.1519
(EN)	time	603.98	13.975	1846.1	1846.1	4417.7	2898.3	47.299	335.66	858.22
Wiki	PCC	0.8183	0.592	-0.1503	-0.1203	0.0133	-0.1877	-0.4915	0.0552	0.2349
(FR)	time	1038.6	23.667	2804.5	2804.5	6664.5	4411.4	83.398	474.42	1129.1
Wiki	PCC	0.6764	0.4619	-0.2035	-0.1542	0.0182	-0.3814	-0.4677	0.2194	0.2679
(GE)	time	1457.3	32.647	4184.1	4184.1	9462.5	6013.7	115.923	716.31	1674.6

P.-Y. Chen

June 10, 2019 13 / 16

Application II: Detection of Bifurcation Time Instance in Dynamic Cellular Networks

- Genome-wide chromosome conformation capture contact maps among 3K cells with 12 observations
- Cellular reprogramming from human fibroblasts to skeletal muscle at some critical time instance (index 6) Liu et al., iScience (2018)
- Temporal difference score $TDS(G_t) = \frac{dist(G_t, G_{t-1}) + dist(G_t, G_{t+1})}{2}$

Application III: Synthesized Attacks in Router Networks

- Connectivity pattern of 9 real-world autonomous system level router communication graph
- Synthesize the connectivity pattern of distributed denial of service (DoS) attacks by randomly selecting one graph and then connecting X% of nodes to a randomly chosen node in the selected graph

Table: Average detection rate on synthesized anomalous events

DoS attack ($X\%$)	FINGER	FINGER	DeltaCon	RMD	λ dist.	λ dist.	GED	VNGE	VNGE	VEO	Cosine	Bhattacharyya	Hellinger
	-JS (Fast)	-JS (Inc.)			(Adj.)	(Lap.)		-NL	-GL		distance	distance	distance
1 %	24 %	10%	14%	14%	10%	24%	14%	22%	22%	14%	12%	10%	12%
3 %	75%	62%	58%	58%	12%	23%	36%	39%	39%	36%	35%	14%	16%
5 %	90%	77%	90%	90%	12%	28%	41%	67%	67%	41%	37%	37%	34%
10 %	91%	91%	91%	91%	91%	91%	81%	91%	91%	46%	46%	67%	71%

- FINGER consistently outperforms other dissimilarity metrics for different \boldsymbol{X}
- When X is small (difficult case for detection), JSdist via FINGER is more sensible than other methods
- When X is large (easy case), the performance becomes similar

- An efficient framework (FINGER) for fast and incremental computation of von Newman Graph Entropy and Jensen-Shannon graph distance
- For batch graph mode, FINGER features linear complexity O(n+m). For online graph mode, FINGER features incremental complexity $O(\Delta n + \Delta m)$. Both modes have asymptotic approximation guarantee.
- New applications in anomaly detection and bifurcation detection
- Code: https://github.com/pinyuchen/FINGER
- Future work:
 - stochastic computation of Jensen-Shannon distance via sampling
 - 2 extension to directed graphs, and graphs with negative weights
 - applications involving graph distance: e.g., brain networks, traffic networks, unsupervised and active learning
- Contact: pin-yu.chen at ibm.com; pinyuchenTW (Twitter)
- Poster: Tuesday 6:30-9:00 pm, Pacific Ballroom #265