LatentGNN: Learning Efficient Non-local Relations for Visual Recognition

Songyang Zhang, Shipeng Yan, Xuming He

ShanghaiTech University

Songyang Zhang sy.zhangbuaa@gmail.com

June 13, 2019

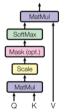
Goal & Motivation

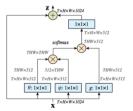
Goal

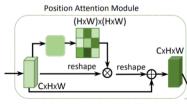
Learning efficient feature augmentation with Non-local relations for visual recognitions.

Motivation

- To model the non-local feature context by a Graph Neural Network (GNN).
 - Self-attention Mechanism, Non-local network as special examples of Graph Neural Network with truncated inference.
- To reduce the complexity of a fully-connected GNN by introducing a **latent representation**.







Non-local Network(Wang et al)

Dual Attention Network(Fu et al)

Non-local Features with GNN

Notation

Input: Grid/Non-grid Conv-feature,

$$\mathbf{X} = [\mathbf{x}_1, \cdots, \mathbf{x}_N]^\mathsf{T}, \mathbf{x}_i \in \mathbb{R}^c$$

Output: Context-aware Conv-feature,

$$ilde{\mathbf{X}} = [ilde{\mathbf{x}}_1, \cdots, ilde{\mathbf{x}}_N]^\mathsf{T}, ilde{\mathbf{x}}_i \in \mathbb{R}^c$$

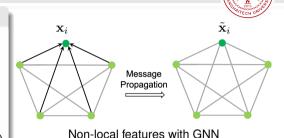
Each Location:

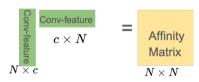
$$\tilde{\mathbf{x}}_i = h\left(\frac{1}{Z_i(\mathbf{X})} \sum_{j=1}^N g\left(\mathbf{x}_i, \mathbf{x}_j\right) \mathbf{W}^\top \mathbf{x}_j\right)$$
 (1)

Matrix Form:

$$\tilde{\mathbf{X}} = h\left(\mathbf{A}(\mathbf{X})\mathbf{X}\mathbf{W}\right), \quad \mathbf{X}_{\mathsf{aug}} = \lambda \cdot \tilde{\mathbf{X}} + \mathbf{X}$$
 (2)

- $g(\mathbf{x}_i, \mathbf{x}_i) = \mathbf{x}_i^\mathsf{T} \mathbf{x}_i$: Pair-wise relations function
- h: Element-wise activation function(ReLU)
- $\triangleright Z_i(\mathbf{X})$: Normalization factor
- $\mathbf{W} \in \mathbb{R}^{c \times c}$: Weight matrix of the linear mapping
- λ: Scaling parameter

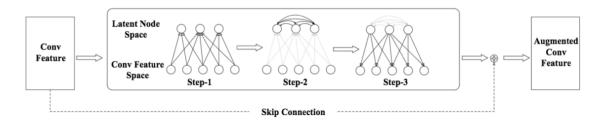


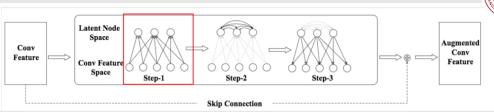


If $N = 500 \times 500$, A requires 500GB of storage!!!

LatentGNN

- Key Idea: Introduce a latent space for efficient global context encoding
- lacksquare Conv-feature Space: $\mathbf{X} = [\mathbf{x}_1, \cdots, \mathbf{x}_N]^\mathsf{T}, \mathbf{x}_i \in \mathbb{R}^c$
- Latent Space: $\mathbf{Z} = [\mathbf{z}_1, \cdots, \mathbf{z}_d]^\mathsf{T}, \mathbf{z}_i \in \mathbb{R}^c, d \ll N$





Step-1: Visible-to-Latent Propagation(Bipartite Graph)

Each Latent Node:

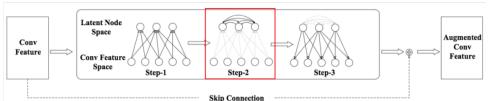
$$\mathbf{z}_k = \sum_{j=1}^N \frac{1}{m_k(\mathbf{X})} \psi(\mathbf{x}_j, \theta_k) \mathbf{W}^\mathsf{T} \mathbf{x}_j, \quad 1 \le k \le d$$
 (3)

Matrix Form:

$$\mathbf{Z} = \mathbf{\Psi}(\mathbf{X})^\mathsf{T} \mathbf{X} \mathbf{W} \tag{4}$$

$$\Psi(\mathbf{X}) = [\psi(\mathbf{x}_1), \cdots, \psi(\mathbf{x}_N)]^\mathsf{T} \in \mathbb{R}^{N \times d}, \quad \psi(\mathbf{x}_i) = \left[\frac{\psi(\mathbf{x}_i, \theta_1)}{m_1(\mathbf{X})}, \cdots, \frac{\psi(\mathbf{x}_i, \theta_d)}{m_d(\mathbf{X})}\right]^\mathsf{T}$$
(5)

- $\psi(\mathbf{x}_j, \theta_k)$: : encode the affinity between node \mathbf{x}_j and node \mathbf{z}_k
 - $m_k(\mathbf{X})$: the normalization factor



Step-2: Latent-to-Latent Propagation(Fully-connected Graph)

Each Latent Node:

$$\tilde{\mathbf{z}}_k = \sum_{i=1}^n f(\phi_k, \phi_j, \mathbf{X}) \mathbf{z}_j, \quad 1 \le k \le d$$
 (6)

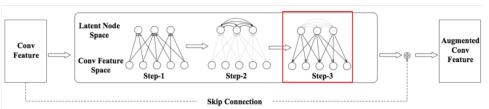
Matrix Form:

$$\mathbf{F}_{\mathbf{X}} = [f(\phi_i, \phi_j, \mathbf{X})]_{d \times d} \tag{7}$$

$$\tilde{\mathbf{Z}} = \mathbf{F}_{\mathbf{X}}\mathbf{Z} \tag{8}$$

 $f(\phi_k, \phi_i, \mathbf{X})$: data-dependent pair-wise relations between two latent nodes

ı



Step-3: Latent-to-Visible Propagation(Bipartite Graph)

Each Visible Node:

$$\tilde{\mathbf{x}}_{i} = h\left(\sum_{k=1}^{d} \psi(\mathbf{x}_{i}, \theta_{k}) \tilde{\mathbf{z}}_{k}\right), \quad 1 \leq i \leq N$$

$$\tilde{\mathbf{X}} = h\left(\mathbf{\Psi}(\mathbf{X}) \tilde{\mathbf{Z}}\right)$$
(10)

Matrix Form: (10)

LatentGNN vs. GNN

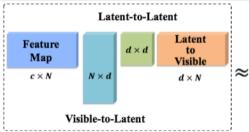
Overall Process

LatentGNN

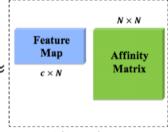
- $\tilde{\mathbf{X}} = h\left(\mathbf{\Psi}(\mathbf{X})\mathbf{F}_{\mathbf{X}}\mathbf{\Psi}(\mathbf{X})^{\mathsf{T}}\mathbf{X}\mathbf{W}\right)$
- $hild \mathbf{X}_{\mathsf{aug}} = \lambda \cdot \mathbf{ ilde{X}} + \mathbf{X}$
- $\mathbf{A}(\mathbf{X}) = \mathbf{\Psi}(\mathbf{X}) \mathbf{F}_{\mathbf{X}} \mathbf{\Psi}(\mathbf{X})^{\mathsf{T}}$

GNN

- $\tilde{\mathbf{X}} = h\left(\mathbf{A}(\mathbf{X})\mathbf{X}\mathbf{W}\right)$
- $\mathbf{X}_{\mathsf{aug}} = \lambda \cdot \tilde{\mathbf{X}} + \mathbf{X}$
- $\mathbf{A}_{i,j} = \frac{1}{Z_i(\mathbf{X})} g(\mathbf{x}_i, \mathbf{x}_j), \mathbf{A}(\mathbf{X}) \in \mathbb{R}^{N \times N}$



 $O(N \cdot d)$



 $O(N \cdot N)$

Experimental Results

Grid Data: Object Detection/Instance Segmentation on MSCOCO

- ► +NLBlock: insert the non-local block in the last stage of the backbone.
- ► **+LatentGNN**: Integrate LatentGNN with the backbone at different stages.

Model	Stage	Kernels	AP_{box}	AP_{box}^{50}	AP_{box}^{75}	AP _{sem}	AP^{50}_{sem}	AP^{75}_{sem}	FLOPS	#Params
ResNet-501	-	-	38.0	59.6	41.5	34.6	56.4	36.5	-	
+NL Block ¹	Stage4	1	39.0	61.1	41.9	35.5	58.0	37.4	+10.67G	+ 2.09M
ResNet-50(1x) ²	-	-	37.8	59.1	41.2	34.2	55.8	36.3	-	-
+ NL Block ²	Stage4	1	38.7	60.2	42.2	35.0	57.0	37.1	+10.67G	+ 2.09M
+ LatentGNN	Stage3	1	38.2	59.7	41.7	34.7	56.3	36.8	+1.48G	+ 0.06M
+ LatentGNN	Stage4	1	39.0	60.7	42.6	35.2	57.6	37.4	+1.11G	+ 0.20M
+ LatentGNN	Stage5	1	38.8	61.0	42.0	35.0	57.6	37.0	+0.97G	+ 0.81M
+ LatentGNN	Stage345	1	39.5	61.6	43.2	35.6	58.3	37.7	+3.59G	+1.07M
ResNet-101(1x)	-	-	39.9	61.3	43.8	35.9	58.2	38.1	-	-
+ LatentGNN	Stage4	1	41.0	63.2	45.0	36.9	59.6	39.4	+1.11G	+ 0.20M
+ LatentGNN	Stage345	1	41.4	63.7	45.2	37.2	60.1	39.5	+3.59G	+1.07M
ResNeXt-101(1x)	-	-	42.1	64.1	45.9	37.8	60.3	39.5	-	-
+ LatentGNN	Stage4	1	43.0	65.3	46.9	38.5	61.9	40.9	+1.11G	+ 0.20M
+ LatentGNN	Stage345	1	43.2	65.6	47.2	38.8	62.1	41.0	+3.59G	+1.07M

1

Experimental Results

Grid Data: Ablation Study on MSCOCO

- Effects of different backbone networks.
- A mixture of low-rank matrices.

Model	Stage	Kernels	AP_{box}	${\sf AP}^{50}_{box}$	AP_{box}^{75}	AP_{sem}	AP_{sem}^{50}	AP^{75}_{sem}	FLOPS	#Params
ResNet-50(1x)	-	-	37.8	59.1	41.2	34.2	55.8	36.3	-	-
+LatentGNN	Stage4	1	39.0	60.7	42.6	35.2	57.6	37.4	+1.11G	+ 0.20M
	Stage4	2	39.0	60.7	42.7	35.3	57.6	37.6	+1.30G	+ 0.29M
	Stage4	3	39.2	61.0	42.8	35.4	57.6	37.7	+1.48G	+0.38M
+LatentGNN	Stage345	1	39.5	61.6	43.2	35.6	58.3	37.7	+3.59G	+1.07M
	Stage345	3	39.5	61.7	43.3	35.7	58.4	37.8	+5.13G	+1.89M

Non-grid Data: Point Cloud Semantic Segmentation on ScanNet

Model	Kernels	Scale	Pixel Accuracy	Voxel Accuracy	Class Pixel Accuracy	Class Voxel Accuracy	FLOPS	#Params
3DCNN(Dai et al., 2017a)	-	-	-	73.0	-	-	-	
PointNet(Qi et al., 2017a)	-	-	-	73.9	-	-	-	-
PointCNN(Li et al., 2018)	-	-	85.1	-	-		-	
PointNet++(Qi et al., 2017b)	-	Single Scale	81.5	83.2	51.7	53.1	-	-
PointNet++(Qi et al., 2017b)	-	Multi Scale	-	84.5	-		-	-
+NL Block	1	Single Scale	82.3	84.0	53.1	54.5	+31M	+0.70M
+LatentGNN	1	Single Scale	82.6	84.2	53.2	54.6	+15M	+0.31M
+LatentGNN	3	Single Scale	83.7	85.2	56.0	57.6	+30M	+0.54M

Take Home Message

LatentGNN

- A novel graph neural network for efficient non-local relations learning.
 - Introduce a latent space for efficient message propagation
- Our model has a modularized design, which can be easily incorporated into any layer in deep ConvNet

Poster:

Thu, Jun 13, 2019

Pacific Ballroom #28

Paper

Code(available soon)

