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[Armstrong and Mindermann, 2017]

That’s impossible without additional assumptions



Learning a policy isn’t sufficient
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We consider a multi-task setting so that we can learn D from examples
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Biases are a part of cognition, 
and are not in the policy !

They are in the planning algorithm
D that created the policy !



Architecture

To learn the 
biased planner, 
minimize over θ

To perform IRL, 
minimize over R



Algorithms

Algorithm 1: Some known rewards
1. On tasks with known rewards, 

learn the planner
2. Freeze the planner and learn 

the reward on remaining tasks

Algorithm 2: ”Near” optimal
1. Use Algorithm 1 to mimic a 

simulated optimal agent
2. Finetune planner and reward 

jointly on human demonstrations



Experiments
We developed five simulated human biases to test our algorithms.



(Some) Results

Our algorithms perform better on 
average, compared to a learned 
Optimal or Boltzmann model

Optimal
Boltzmann
Known rewards
“Near” optimal

… But an exact model of the demonstrator does much better, hitting 98%.



Conclusion

Learning systematic biases has the potential to improve 
reward inference, but differentiable planners need to 

become significantly better before this will be feasible.


