Fast Algorithm for Generalized Multinomial Models with Ranking Data

Jiaqi Gu (Joint work with Prof. Guosheng Yin) June 13, 2019

Department of Statistics and Actuarial Science, HKU

Generalized multinomial models

Consider *d* basic cells c_1, \ldots, c_d , where c_i is assigned with cell probability p_i ($\sum_{i=1}^d p_i = 1$). Suppose cell c_i is chosen for a_i times ($i = 1, \ldots, d$), then the log-likelihood function is

$$\ell(\mathbf{p}) = \sum_{i=1}^{d} a_i \log p_i.$$
(1)

Completeness condition: Sets of basic cells for selection are always $\{c_1\}, \ldots, \{c_d\}$. (choose 1 from d)

If completeness condition is violated:

- Union of sets for selection includes only a fraction of basic cells. (choose 1 from k < d)
- Sets for selection consists of more than one basic cell. (choose l > 1 from d)
- \rightarrow Incomplete multinomial models.

Log-likelihood function

$$\ell(\mathbf{p}) = \sum_{j=1}^{n} \Big\{ \log(\sum_{c_i \in \mathcal{A}^j} p_i) - \log(\sum_{c_i \in \mathcal{C}^j} p_i) \Big\},$$
(2)

where C^{j} is the union of sets for selection, A^{j} is the selected set in *j*-th record.

Examples:

- Placett-Luce model [3, 4];
- Bradley–Terry model [1];
- Contingency table model [2].

Markov chain based algorithm

Denote
$$W_i = \{j : c_i \in A^j\}$$
 and $L_i = \{j : c_i \in (\mathcal{C}^j \setminus A^j)\},$
 $q_j^+ = \sum_{c_i \in A^j} p_i$ and $q_j^* = \sum_{c_i \in \mathcal{C}^j} p_i,$

$$\ell(\mathbf{p}) = \sum_{j=1}^n \Big\{ \log(q_j^+) - \log(q_j^*) \Big\}.$$

Letting
$$\frac{\partial \ell(\mathbf{p})}{\partial p_i} = 0$$
, we have

$$\sum_{i' \neq i} p_{i'} \left[\sum_{j \in W_i \cap L_{i'}} \frac{p_i}{q_j^+ q_j^*} \right] = \sum_{i' \neq i} p_i \left[\sum_{j \in L_i \cap W_{i'}} \frac{p_{i'}}{q_j^+ q_j^*} \right], \quad (3)$$

$$(i = 1, \dots, d).$$

Markov chain based algorithm

Algorithm 1 Markov chain based algorithm

Input: Observations $\{(A^j, C^j) : j = 1, ..., n\}$ and calculate $\{W_i, L_i\}$ for each c_i . Initialize $\mathbf{p} = (1/d, ..., 1/d)^T$. Initialize $\Sigma(\mathbf{p}) = \mathbf{0}_{d \times d}$. **repeat** for $i \in \{1, ..., d\}$ do for $i' \in \{1, ..., d\} \setminus \{i\}$ do Compute

$$\sigma_{ii'}(\mathbf{p}) \leftarrow \sum_{j \in L_i \cap W_{i'}} \frac{p_{i'}}{q_j^+ q_j^*}$$

end for

end for

Compute $\sigma_{ii}(\mathbf{p})$ (i = 1, ..., d) and then normalize $\Sigma(\mathbf{p})$ so that $\forall i, \sum_{i'=1}^{d} \sigma_{ii'}(\mathbf{p}) = 1$. $\mathbf{p} \leftarrow T(\mathbf{p})$ under the transition matrix $\Sigma(\mathbf{p})$. **until** convergence.

4

Experiments: Convergence

Estimator obtained by our algorithm is close to the MLE, indicating our algorithm's convergence to the MLE.

Experiments: Convergence rate

Figure 1: Path of iterations for three algorithms on sushi data

Experiments: Computational efficiency

• Choose 1 from k < d:

• Choose l > 1 from d:

- Our algorithm obtain the MLE efficiently than existing methods.
- Further improvement. (Especially in situation "choose l > 1 from d")

Reference

- Ralph Allan Bradley and Milton E. Terry. Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons. Biometrika, 39(3/4):324–345, 1952.
- - Tar Chen and Stephen E. Fienberg.
 - The Analysis of Contingency Tables with Incompletely Classified Data.

Biometrics, 32(1):133, 1976.

- - R. Duncan Luce.

Individual Choice Behavior: A Theoretical analysis. Wiley, 1959.

R. L. Plackett.

The Analysis of Permutations.

Applied Statistics, 24(2):193–202, 1975.

Thank you for listening.