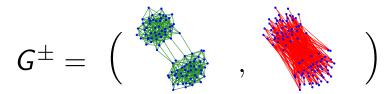
Spectral Clustering of Signed Graphs via Matrix Power Means

Pedro Mercado, Francesco Tudisco and Matthias Hein

ICML 2019, Long Beach, USA

Our Goal: Extend Spectral Clustering to Graphs With Both Positive and Negative Edges

- Positive Edges: encode friendship, similarity, proximity, trust
- Negative Edges: encode enmity, dissimilarity, conflict, distrust

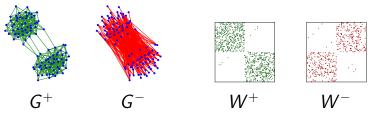


A signed graph is the pair $G^{\pm} = (G^+, G^-)$ where $G^+ = (V, W^+)$ encodes **positive** relations, and $G^- = (V, W^-)$ encodes **negative** relations

Clustering of Signed Graphs

Given: an undirected signed graph $G^{\pm} = (G^+, G^-)$ Goal : partition the graph such that

- edges within the same group have positive weights
- edges between different groups have negative weights



Our Goal: define an operator that <u>blends</u> the information of (G^+, G^-) such that the smallest eigenvectors are informative.

Our Goal: define an operator that <u>blends</u> the information of (G^+, G^-) such that the smallest eigenvectors are informative.

State of the art approaches:

 $\mathbf{L}_{\mathbf{SR}} = \mathbf{L}^+ + \mathbf{Q}^- \tag{Kunegis, 2010}$

 $\mathbf{L}_{\mathbf{BR}} = \mathbf{L}^+ + \mathbf{W}^- \tag{Chiang, 2012}$

 $\mathbf{H} = (\alpha - 1)\mathbf{I} - \sqrt{\alpha}(\mathbf{W}^+ - \mathbf{W}^-) + \mathbf{D}^+ + \mathbf{D}^-$ (Saade, 2015)

Current methods are arithmetic means of Laplacians

Spectral Clustering of Signed Graphs

Poster #190

The **power mean** of non-negative scalars a, b, and $p \in \mathbb{R}$:

$$m_p(a,b) = \left(rac{a^p+b^p}{2}
ight)^{1/p}$$

Particular cases of the scalar power mean are:

$p ightarrow -\infty$	p = -1	ho ightarrow 0	p=1	$p \to \infty$
$\min\{a, b\}$	$2(\frac{1}{a}+\frac{1}{b})^{-1}$	\sqrt{ab}	(a+b)/2	$\max\{a, b\}$
minimum	harmonic mean	geometric mean	arithmetic mean	maximum

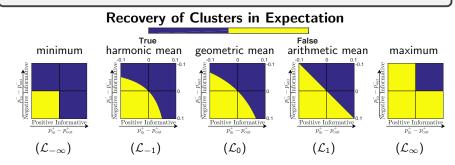
We introduce the **Signed Power Mean Laplacian** as an alternative to **blend the information** of the signed graph G^{\pm} :

$$\mathbf{L}_{\mathbf{p}} = \left(\frac{\left(\mathbf{L}_{\mathsf{sym}}^{+}\right)^{p} + \left(\mathbf{Q}_{\mathsf{sym}}^{-}\right)^{p}}{2}\right)^{1/p}$$

Spectral Clustering of Signed Graphs

Analysis in the Stochastic Block Model

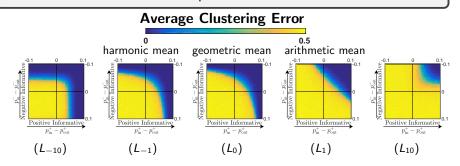
Theorem (loosely stated): The Signed Power Mean Laplacian L_p with $p \le 0$ is better than arithmetic mean approaches in expectation.



Spectral Clustering of Signed Graphs

Analysis in the Stochastic Block Model

Theorem (loosely stated): The Signed Power Mean Laplacian L_p with $p \le 0$ is better than arithmetic mean approaches in expectation.



Theorem (loosely stated): with high probability eigenvalues and eigenvectors of L_p concentrate around those of the expected Signed Power Mean Laplacian \mathcal{L}_p