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Problem Statement and Proposed Method
Given two graphs, we aim to achieve

I Graph matching: Finding a correspondence between their nodes.

I Node embedding: Embedding their nodes in the same space.

Unify them in our Gromov-Wasserstein Learning (GWL) framework.

dGW (Gs ,Gt) := minT∈Π(µs ,µt)

∑
i,j,i ′,j′

L(csij , c
t
i ′j′)Tii ′Tjj′ = minT∈Π(µs ,µt)〈L(Cs ,Ct ,T ),T 〉.
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Relational matching between graphs
   Cost = |d(A, D) - d(1, 2)|
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Gromov-Wasserstein Learning

min
Xs ,Xt

min
T∈Π(µs ,µt)

〈L(Cs(Xs),Ct(Xt),T ),T 〉︸ ︷︷ ︸
Gromov-Wasserstein discrepancy

+ α〈K (Xs ,Xt),T 〉︸ ︷︷ ︸
Wasserstein discrepancy

+β
∑

k=s,t
R(K (Xk ,Xk),Ck)︸ ︷︷ ︸

prior information
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Embedding space of nodes

Relational matching between graphs
   Cost = |d(A, D) - d(1, 2)|
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Experimental Results
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and emails between employees. According to the types of
the communications, we obtain two networks, denoted as
CallNet and EmailNet. Because an employee has two in-
dependent accounts in these two networks, we aim to link
the accounts belonging to the same employee. We test our
method on a subset of the MC3 dataset, which contains
622 employees and their communications through phone
calls and emails. In this subset, for each selected employee
there is at least one employee in a network (either CallNet
or EmailNet) having over 10 times communications with
him/her, which ensures that each node has at least one reli-
able edge. Additionally, for each network, we can control
the density of its edge by thresholding the count of interac-
tions. When we only keep the edges corresponding to the
communications happening more than 8 times, we obtain
two sparse graphs: the CallNet contains 1, 228 edges and
the EmailNet contains 1, 235 edges. When we keep all the
communications and the corresponding edges, we obtain
two dense graphs, the CallNet contains 141, 846 edges and
the EmailNet contains 115, 782 edges. Generally, experi-
ence indicates that matching dense graphs is much more
difficult than matching sparse ones.

We compare our methods (GWL-R and GWL-C) with well-
known graph matching methods: the graduated assign-
ment algorithm (GAA) (Gold & Rangarajan, 1996), the
low-rank spectral alignment (LRSA) (Nassar et al., 2018),
TAME (Mohammadi et al., 2017), GRAAL2, MI-GRAAL3,
MAGNA++4, HugAlign and NETAL.5 These alternatives
achieve the state-of-the-art performance on matching large-
scale graphs, e.g., protein networks. Table 1 lists the match-
ing results obtained by the different methods.6 For the alter-
native methods, their best results in 10 trials are listed. We
can find that their performance on sparse and dense graphs is
inconsistent. For example, GRAAL works almost as well as
our GWL-R and GWL-C for sparse graphs, but its matching
result becomes much worse for dense graphs. For the base-
line GWD, it is inferior to most graph-matching methods on
node correctness, because it purely minimizes the GW dis-
crepancy based on the information of pairwise interactions
(i.e., edges). Additionally, GWD merely relies on data-
driven distance matrices, which is sensitive to the noise in
the graphs. However, when we take node embeddings (with
dimension D = 100) into account, the proposed GWL-R
and GWL-C outperform GWD and other considered ap-
proaches consistently, on both sparse and dense graphs.

To demonstrate the convergence and the stability of our
method, we run GWD, GWL-R and GWL-C in 10 trials

2http://www0.cs.ucl.ac.uk/staff/natasa/GRAAL.
3http://www0.cs.ucl.ac.uk/staff/natasa/MI-GRAAL.
4https://www3.nd.edu/⇠cone/MAGNA++.
5http://ttic.uchicago.edu/⇠hashemifar.
6For GWD, GWL-R and GWL-C, here we show the node

correctness calculated based on the learned optimal transport.
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Figure 3. Visualization of typical experimental results.

Table 1. Communication network matching results.

Method Call!Email (Sparse) Call!Email (Dense)
Node Correctness (%) Node Correctness (%)

GAA 34.22 0.53
LRSA 38.20 2.93
TAME 37.39 2.67

GRAAL 39.67 0.48
MI-GRAAL 35.53 0.64
MAGNA++ 7.88 0.09
HugAlign 36.21 3.86
NETAL 36.87 1.77
GWD 23.16±0.46 1.77±0.22

GWL-R 39.64±0.57 3.80±0.23
GWL-C 40.45±0.53 4.23±0.27

with different initialization. For each method, its node cor-
rectness is calculated based on optimal transport and the
embedding-based distance matrix. The 95%-confidence in-
terval of the node correctness is estimated as well, as shown
in Table 1. We find that the proposed method has good sta-
bility and outperforms other methods with high confidence.
Figure 3(a) visualizes the GW discrepancy and the node
correctness with respect to the number of outer iterations;
the 95%-confidence intervals are shown as well. In Fig-
ure 3(a), we find that the GW discrepancy decreases and
the two kinds of node correctness increase accordingly and
become consistent with the increase of iterations, which
means that the embeddings we learn and their distances
indeed reflect the correspondence between the two graphs.
Figure 3(b) visualizes the learned embeddings with the help
of t-SNE (Maaten & Hinton, 2008). We find that the learned
node embeddings of different graphs are on the same mani-
fold and the overlapped embeddings indicate matched pairs.

5.3. MIMIC-III: Procedure recommendation

Besides typical graph matching, our method has poten-
tial for other applications, like recommendation systems.
Such systems recommend items to users according to the
distance/similarity between their embeddings. Traditional
methods (Rendle et al., 2009; Chen et al., 2018b) learn the
embeddings of users and items purely based on their inter-
actions. Recent work (Monti et al., 2017; Ying et al., 2018)
shows that considering the user network and/or item net-


