Poster #20 Bayesian Nonparametric Federated Learning of Neural Networks

Mikhail Yurochkin Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, Yasaman Khazaeni

IBM Research, MIT-IBM Watson AI Lab

ICML 2019

June 12th

Federated Learning

Model fusion perspective

Probabilistic Federated Neural Matching

Simulated heterogeneous Federated Learning on MNIST

Client 2

Examples of first layer weights

Neuron 12

Neuron 21

Client 1

Client 2

Neuron 7

Neuron 8

Neuron 49

Neuron 36

PFNM discovers correspondences among weights

Client 1 Neuron 12

Client 2 Neuron 8

Matched neuron 8

Client 1 Neuron 49

Client 2 Neuron 7

Client 2 Neuron 36

Matched neuron 44

Matched neuron 33

Client 1 Neuron 21

Matched neuron 58

Summary

PFNM is a method for combining pre-trained fully-connected neural networks:

- Can combine NNs trained on heterogeneous data without access to data
- Can be further improved with few communication rounds (if data is available) \bullet
- **Outperforms Distributed SGD and Federated Averaging**

Technical contributions:

- Indian Buffet Process based model to govern correspondences between weights of local neural networks. Applicable to multilayer networks
- BNP allows for adaptive learning of global NN size
- Fast MAP inference using iterative Hungarian algorithm

THANK YOU | Please come to poster #20