Probability Functional Descent: A Unifying Perspective on GANs, VI, and RL

Casey Chu <caseychu@stanford.edu> Jose Blanchet Peter Glynn

Deep generative models

Deep generative models

Variational inference

Deep generative models Variation

Variational inference

Deep reinforcement learning

Probability functional

$$J: \mathbf{P}(X) \to \mathbb{R}$$

Probability functional

 $J: \mathbf{P}(X) \to \mathbb{R}$

"gradient" ∇J

Probability functional $J: \mathbf{P}(X) \longrightarrow \mathbb{R}$

"gradient" ∇J

von Mises influence function

$$\Psi: X \to \mathbb{R}$$

Gradient descent on $f : \mathbb{R}^n \to \mathbb{R}$

- **0**. Initialize $x \in \mathbb{R}^n$ arbitrarily
- 1. Compute the gradient $g = \nabla f(x)$
- 2. Choose x' such that $x' \cdot g < x \cdot g$ (usually, we set $x' = x \alpha g$)

Gradient descent on $f : \mathbb{R}^n \to \mathbb{R}$

- **0**. Initialize $x \in \mathbb{R}^n$ arbitrarily
- 1. Compute the gradient $g = \nabla f(x)$
- 2. Choose x' such that $x' \cdot g < x \cdot g$ (usually, we set $x' = x \alpha g$)

Probability functional descent on $J : \mathbf{P}(X) \to \mathbb{R}$

- 0. Initialize a distribution $\mu \in \mathbf{P}(X)$ arbitrarily
- 1. Compute the **influence function** Ψ of J at μ
- 2. Choose μ' such that $\mathbb{E}_{x \sim \mu'}[\Psi(x)] \leq \mathbb{E}_{x \sim \mu}[\Psi(x)]$

Generative modeling

 $J_{\rm G}(\mu) = {\rm D}(\mu \parallel v_0)$

where D is e.g. Jensen–Shannon, Wasserstein

- 1. Optimize the **discriminator**, which approximates the influence function of J_{G}
- 2. Update the **generator** μ

PFD recovers:

- Minimax GAN
- Non-saturating GAN
- Wasserstein GAN

Probability functional descent

- 1. Compute the **influence function** Ψ of J at μ
- 2. Choose μ' such that $\mathbb{E}_{x \sim \mu'}[\Psi(x)] < \mathbb{E}_{x \sim \mu}[\Psi(x)]$

Variational inference

 $J_{\rm VI}(q) = \mathrm{KL}(q(\theta) \parallel p(\theta \mid x))$

- 1. Compute the **ELBO**, $\log(q(\theta)/p(x,\theta))$, the influence function for J_{VI}
- 2. Update the **approximate posterior** *q*

PFD recovers:

- Black-box variational inference
- Adversarial variational Bayes
- Approximate posterior distillation

Probability functional descent

- 1. Compute the **influence function** Ψ of J at μ
- 2. Choose μ' such that $\mathbb{E}_{x \sim \mu'}[\Psi(x)] < \mathbb{E}_{x \sim \mu}[\Psi(x)]$

Reinforcement learning

 $J_{\mathrm{RL}}(\pi) = \mathbb{E}_{\pi}[\sum_{t} \gamma^{t} R_{t}]$

- 1. Approximate the **advantage** $Q^{\pi}(s,a)$
 - $-V^{\pi}(s)$, the influence function for $J_{\rm RL}$
- 2. Update the **policy** π

PFD recovers:

- Policy gradient
- Actor-critic
- Dual actor critic

Probability functional descent

- 1. Compute the **influence function** Ψ of J at μ
- 2. Choose μ' such that $\mathbb{E}_{x \sim \mu'}[\Psi(x)] < \mathbb{E}_{x \sim \mu}[\Psi(x)]$

Probability functional descent is a unifying perspective that enables the easy development of new algorithms.

Probability functional descent is a unifying perspective that enables the easy development of new algorithms.

https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394/ https://arxiv.org/abs/1710.10196 https://www.analyticsvidhya.com/blog/2016/06/bayesian-statistics-beginners-simple-english/ https://stats.stackexchange.com/questions/246117/applying-stochastic-variational-inference-to-bayesian-mixture-of-gaussian http://people.csail.mit.edu/hongzi/content/publications/DeepRM-HotNets16.pdf https://towardsdatascience.com/atari-reinforcement-learning-in-depth-part-1-ddgn-ceaa762a546f

Probability Functional Descent: A Unifying Perspective on GANs, VI, and RL

Casey Chu <caseychu@stanford.edu> Jose Blanchet Peter Glynn

