Deep Compressed Sensing

Yan Wu, Mihaela Rosca, Tim Lillicrap

Compressed Sensing

A Brief Review

An underdetermined problem: $y=Mx+\eta$

Reconstruction of x is possible when the signal is *sparse* (Candes, Donoho, Romberg, Tao, 2006~):

$$x^{*} = \operatorname{argmin}_{x} \|y - Mx\|_{2}^{2} + \lambda \|x\|_{1}$$

Why CS works Restricted Isometry Property (RIP/REC)

- The projection M preserves the Euclidean distance between *k-sparse* signals
- Many random matrices have the RIP with high probability

$$(1-\delta) \|x_1 - x_2\|_2^2 \le \|Mx_1 - Mx_2\|_2^2 \le (1+\delta) \|x_1 - x_2\|_2^2$$

Examples: MRI reconstruction, the single pixel camera

RIP can be a trained property

MNIST

Baseline:

Compressed Sensing using Generative Models

(Bora et al. 2017, almost the same as our model except using separately trained generators)

MODEL	10	25 measurements	STEPS
BASELINE	54.8	17.2	10×1000
LINEAR	10.8 ± 3.8	6.9 ± 2.7	3
NN	12.5 ± 2.2	10.2 ± 1.7	3
LINEAR(L)	6.5 ± 2.1	$4. \pm 1.4$	3
NN(L)	5.3 ± 1.9	3.4 ± 1.2	3
CelebA			
MODEL	20	50 measurements	STEPS
BASELINE	156.8	82.3	2×500
LINEAR	34.7 ± 7.9	27.1 ± 6.1	3
NN	46.1 ± 8.9	41.2 ± 8.3	3
LINEAR(L)	26.2 ± 5.9	20.5 ± 4.3	3
NN(L)	23.4 ± 5.8	18.5 ± 4.3	3

Improve GANs by online optimisation

CIFAR, Deep Convolutional GAN

DCGANs, sweeps over 144 hyper-parameters:

Spectral-normalised GANs

	SN-GAN	SN-GAN (OURS)	CS+SN-GAN
IS FID	$\begin{array}{c c} 7.42 \pm 0.08 \\ 29.3 \end{array}$	7.34 ± 0.07 29.53 ± 0.36	${\begin{aligned} & 7.80 \pm 0.05 \\ & 23.13 \pm 0.50 \end{aligned}}$

Summary

- A framework based on minimising measurement errors
- Bring RIP to neural networks via training
- Improve GANs: novel use of the discriminator as a measurement function
- A new semi-supervised model

Model	Metric Property	
Compressed Sensing	RIP from random projection	
Deep Compressed Sensing	Trained RIP	
Semi-supervised GANs	Multi-Class Classifier	
CS-GANs	Binary Classifier	

Poster #24, Pacific Ballroom

