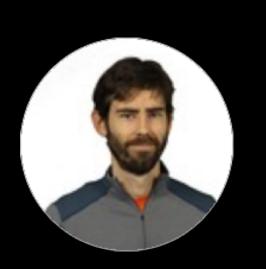
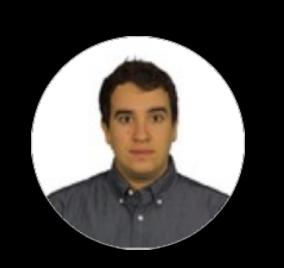


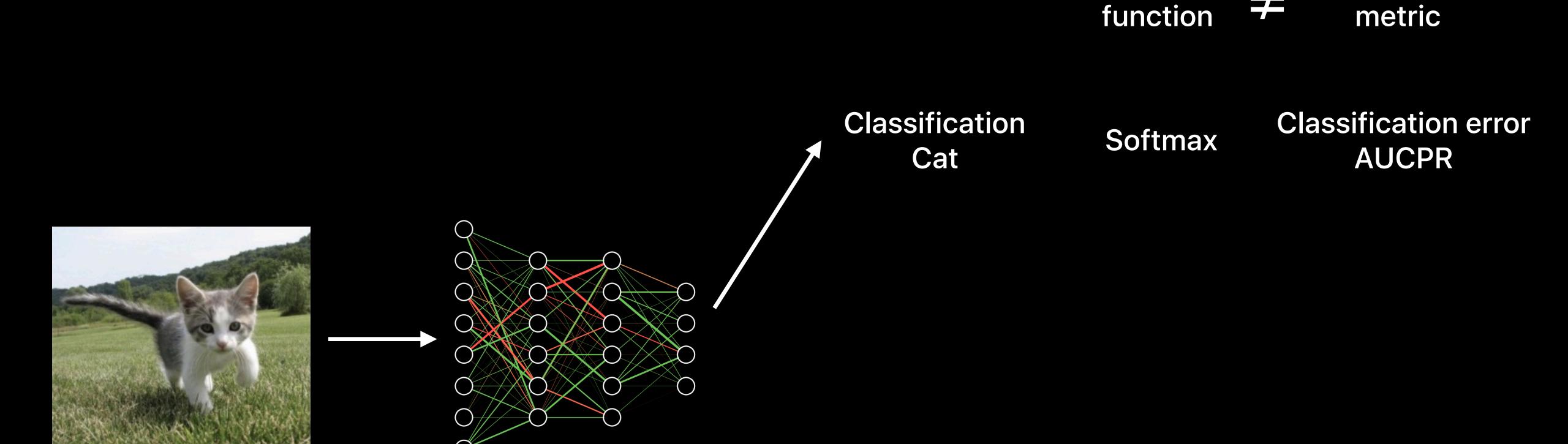
Addressing the Loss-Metric Mismatch with Adaptive Loss Alignment





Chen Huang, Shuangfei Zhai, Walter Talbott, Miguel Bautista, Shih-Yu Sun, Carlos Guestrin, Josh Susskind **Apple Inc.**

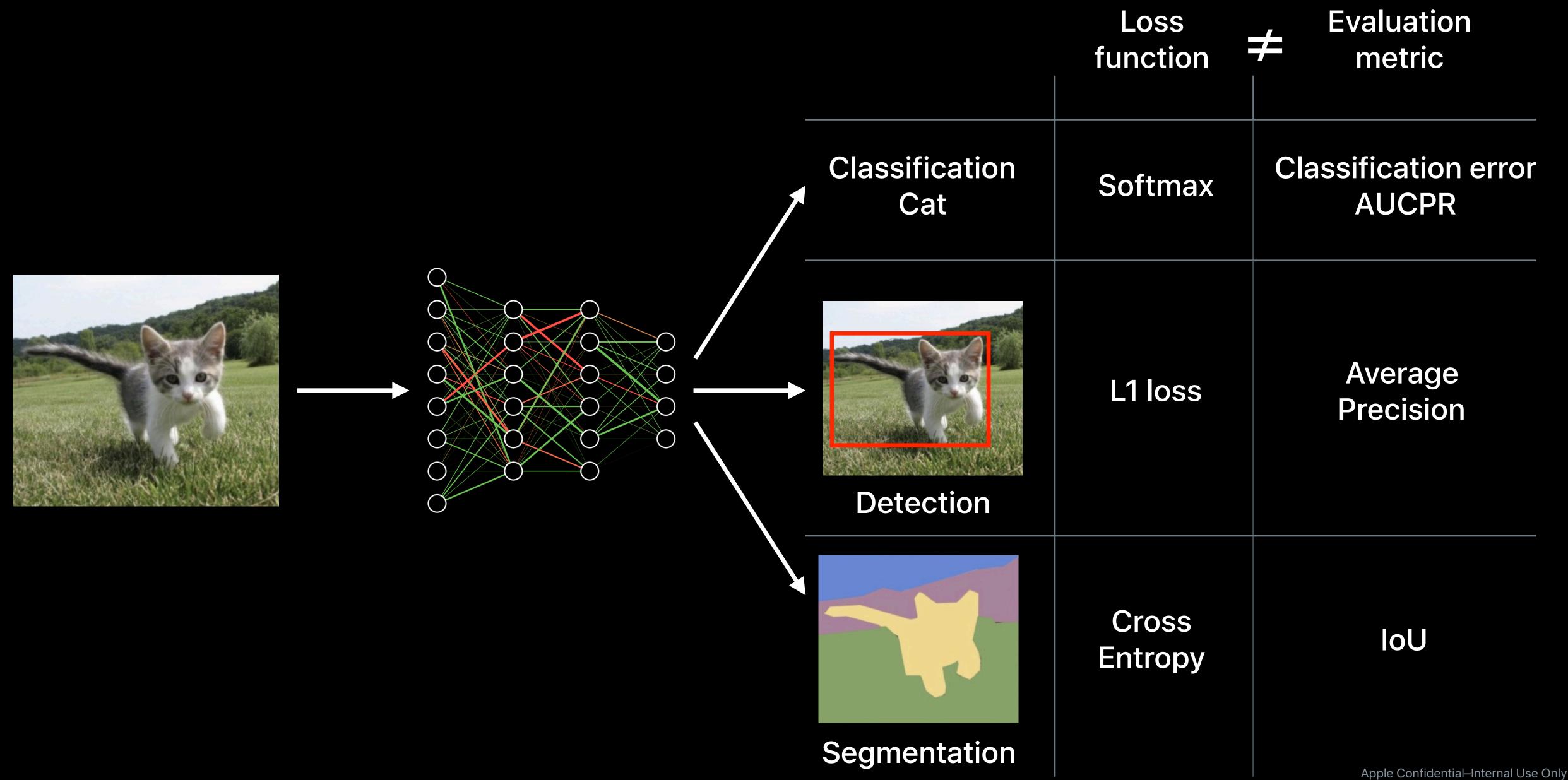
Loss-Metric Mismatch



Evaluation

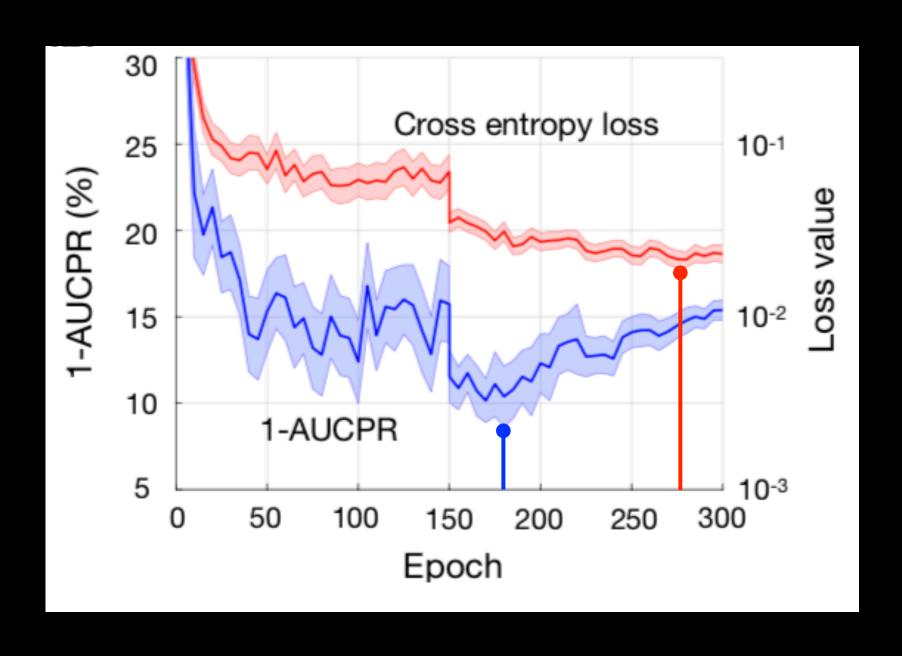
Loss

Loss-Metric Mismatch



Loss-Metric Mismatch

- Loss functions are often designed to be differentiable (convex and smooth)
- Many evaluation metrics are nonlinear, non-continuous, non-decomposable



Adaptive Loss Alignment (ALA) at Apple

Loss function

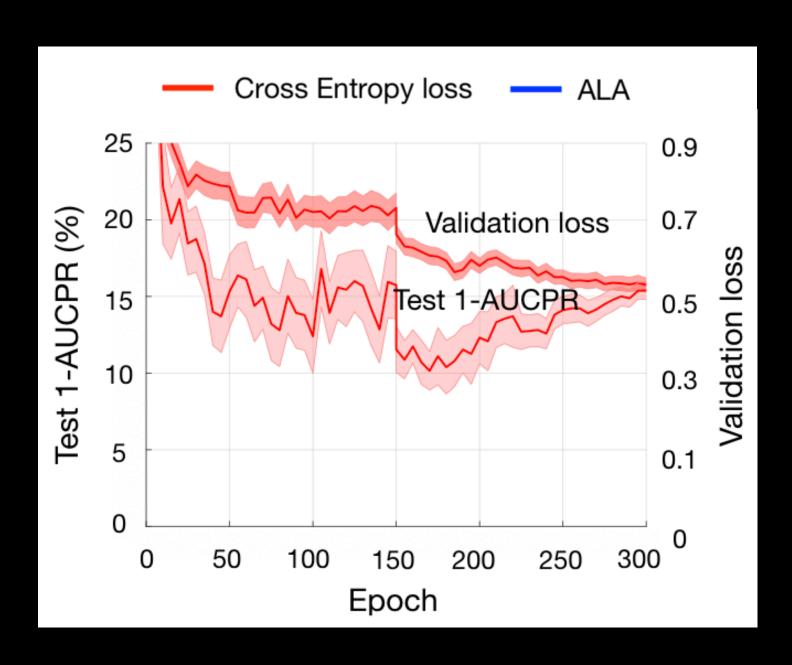
VS.

Evaluation metrics:
False Acceptance Rate (FAR)
False Rejection Rate (FRR)

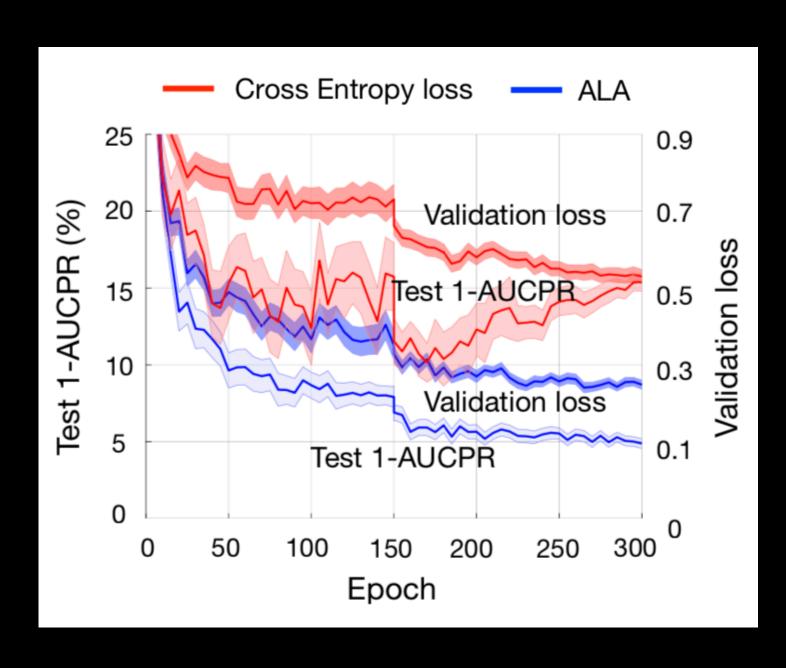
•••

- Reinforcement learning of dynamic loss function
- Align loss with the target evaluation metric

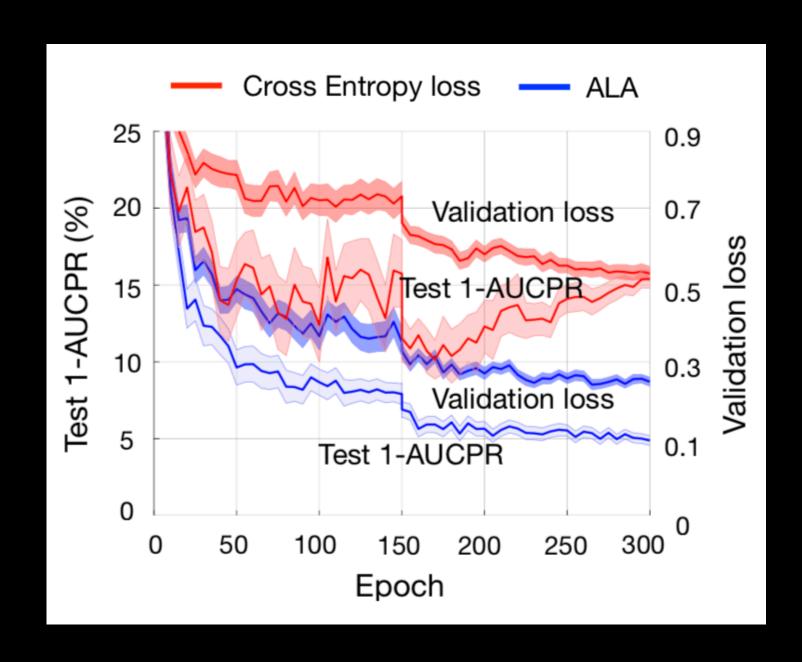
- Reinforcement learning of dynamic loss function
- Align loss with the target evaluation metric

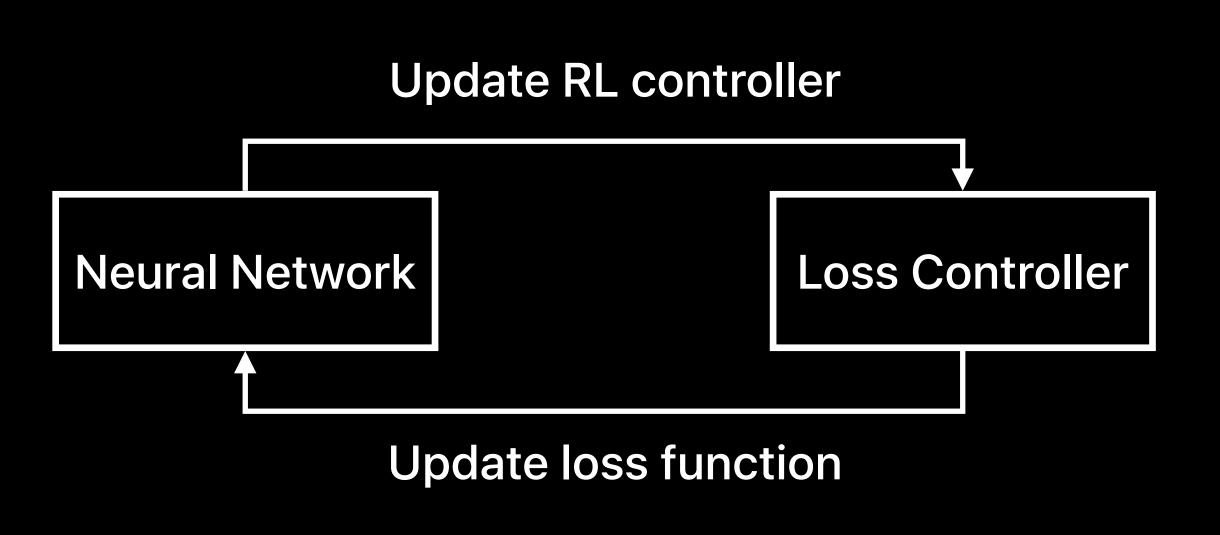


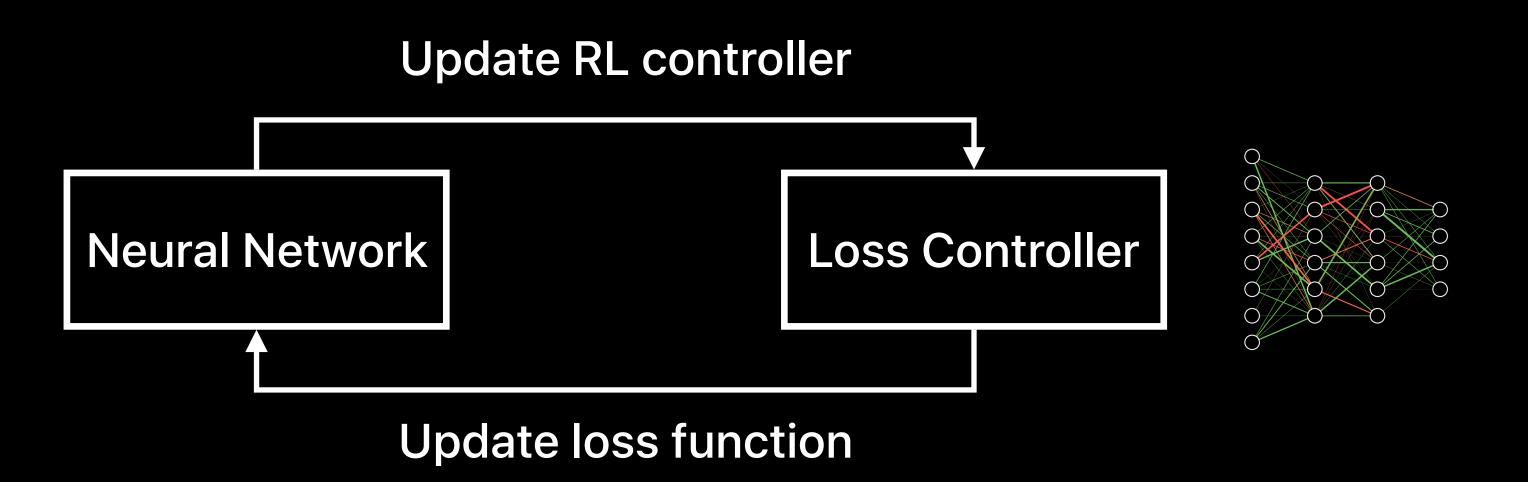
- Reinforcement learning of dynamic loss function
- Align loss with the target evaluation metric

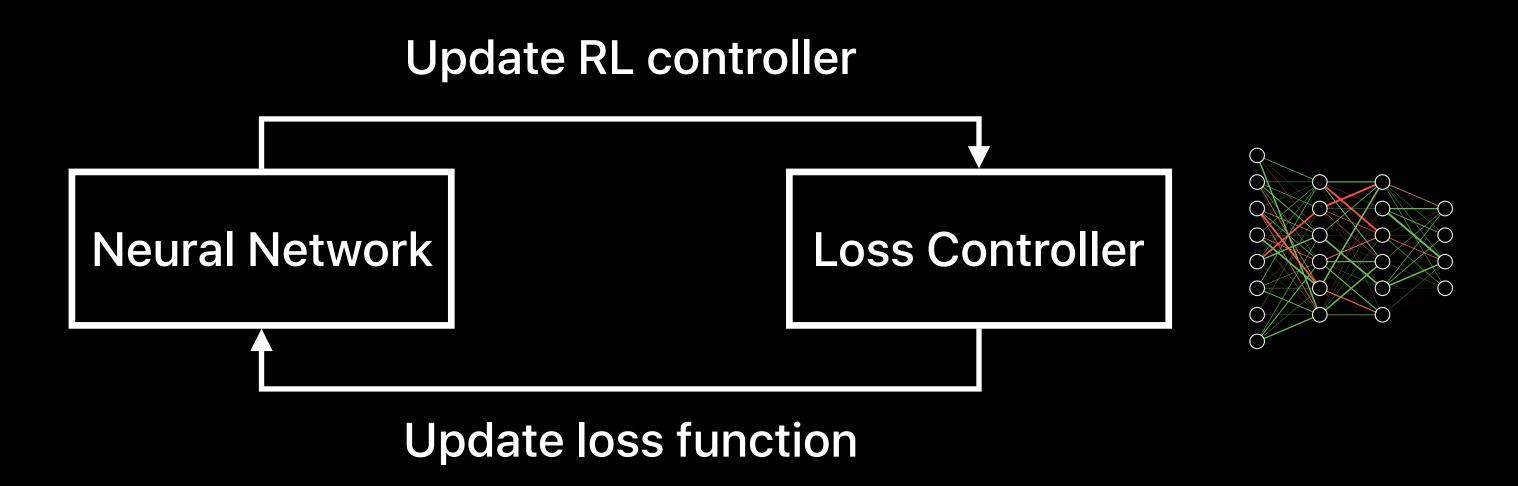


- Reinforcement learning of dynamic loss function
- Align loss with the target evaluation metric



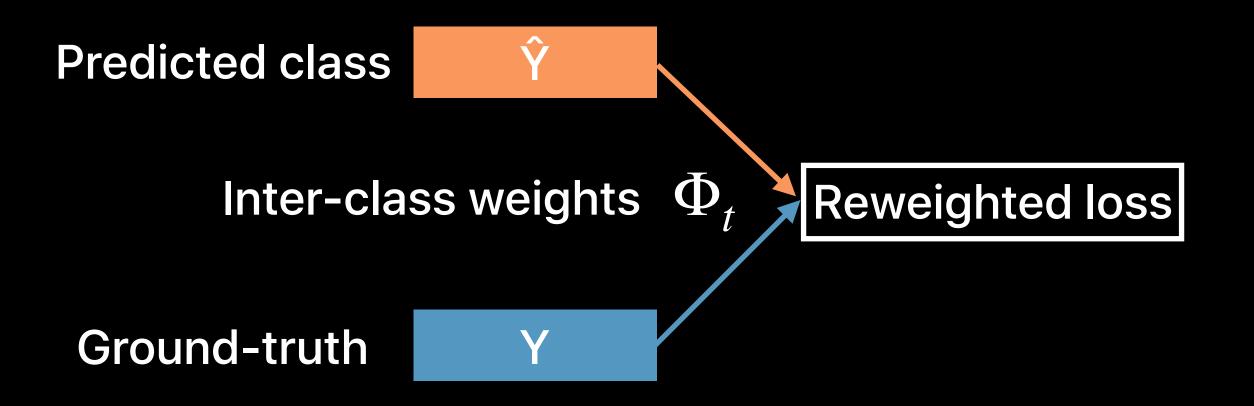




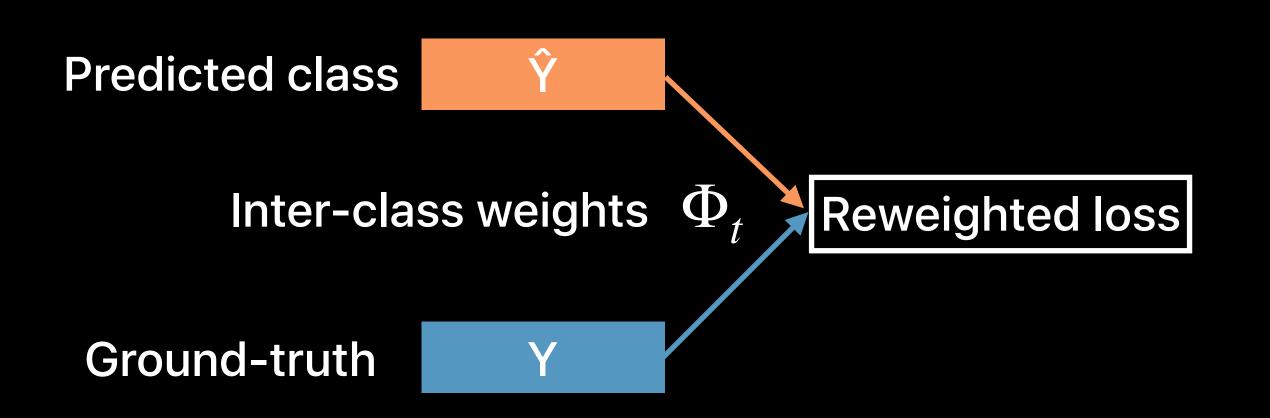


- Action: Update loss parameters at small steps
- State: Learning statistics on validation set + current iteration number
- Reward: Improvement of validation metric

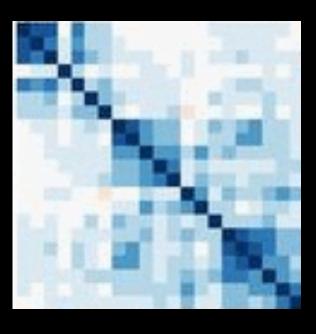
Classification loss parameterization



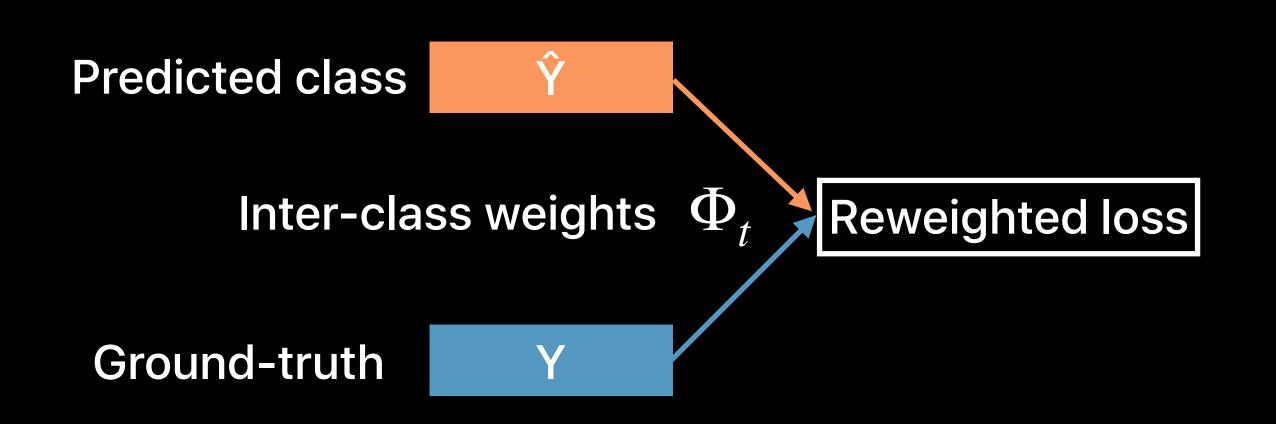
Classification loss parameterization



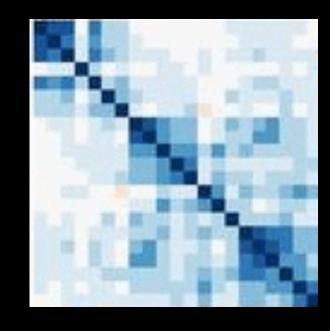
Evolving loss parameters Φ_t



Classification loss parameterization



Evolving loss parameters Φ_t

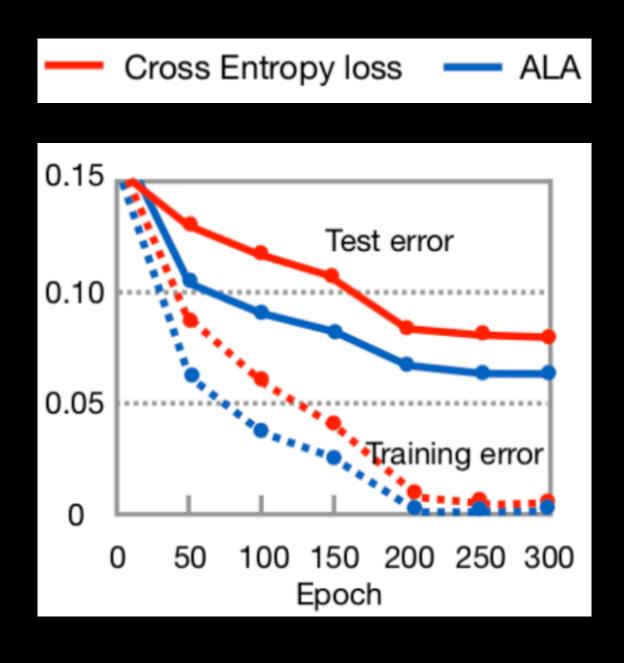


Hierarchical classification curriculum

Adaptive Loss Alignment (ALA) Results

ALA improves optimization + generalization

SOTA performance



Classification example on CIFAR-10

CIFAR10 Classification*		Metric learning (Products retrieval)		
Method	Error	Method	Recall@1	Recall@10
CrossEntropy	7.51%	Triplet (2015)	66.7%	82.4%
L2T (2018) [1]	7.10%	Margin (2017)	72.7%	86.2%
L2T-DLF (2018) [2]	6.95%	ABE-8 (2018)	76.3%	88.4%
ALA (1-Net)	6.85%	Triplet+ALA	75.7%	89.4%
ALA (10-nets)	6.79%	Margin+ALA	78.9%	90.7%

^{*} Using ResNet-32 network

[2] Wu etal. "Learning to Teach with Dynamic Loss Functions", NeurIPS'18

^[1] Fan etal. "Learning to Teach", ICLR'18

Poster discussion

6:30-9:00pm @ Pacific Ballroom #23

