Introduction	Related works 00 0	Co-teaching	Co-teaching+	Experiments	Summary	References
How do	es Disagree	ment Help (Generalizatic	on against L	abel Corru	ption?
	(Center for Advanced	d Intelligence Project	t, RIKEN, Japan		

Center for Artificial Intelligence, University of Technology Sydney, Australia

Jun 12th, 2019

	Related works 00 0	Co-teaching	Co-teaching+		References
Outline					

- Introduction to Learning with Label Corruption/Noisy Labels.
 - 2 Related works
 - Learning with small-loss instances
 - Decoupling
- 3 Co-teaching: From Small-loss to Cross-update
- 4 Co-teaching+: Divergence Matters
- 5 Experiments
- 6 Summary

Introduction	Related works	Co-teaching	Co-teaching+		References
	00 0				

Big and high quality data drives the success of deep models.

Figure: There is a steady reduction of error every year in object classification on large scale dataset (1000 object categories, 1.2 million training images) [Russakovsky et al., 2015].

• However, what we usually have in practice is big data with noisy labels.

Introduction	Related works 00 0	Co-teaching	Co-teaching+		References

Noisy labels from crowdsourcing platforms.

CROWDSOURCING VALUE CHAIN VALUE CROWD COMMUNITY CROWDSOURCERS (SOLVERS) (SEEKERS) MARKETPLACE (FACILITATOR)

Credit: Torbjørn Marø

• Unreliable labels may occur when the workers have limited domain knowledge.

Introduction	Related works 00 0	Co-teaching	Co-teaching+		References

Noisy labels from web search/crawler.

Screenshot of Google.com

• The keywords may not be relevant to the image contents.

Introduction	Related works 00 0	Co-teaching	Co-teaching+		References

How to model noisy labels?

• Class-conditional noise (CCN):

Each label y in the training set (with c classes) is flipped into \tilde{y} with probability $p(\tilde{y}|y)$. Denote by $T \in [0,1]^{(c \times c)}$ the noise transition matrix specifying the probability of flipping one label to another, so that $\forall_{i,j} T_{ij} = p(\tilde{y} = j|y = i)$.

Introduction	Related works 00 0	Co-teaching	Co-teaching+		References

What happens when learning with noisy labels?

Figure: Accuracy of neural networks on noisy MNIST with different noise rate (0., 0.2, 0.4, 0.6, 0.8). (Solid is train, dotted is validation.) [Arpit et al., 2017]

Memorization: Learning easy patterns first, then (totally) over-fit noisy training data.

Effect: Training deep neural networks directly on noisy labels results in accuracy degradation.

Introduction	Related works 00 0	Co-teaching	Co-teaching+		References

How can wen robustly learn from noisy labels?

Current progress in three orthogonal directions:

• Learning with noise transition:

Forward Correction (Australian National University, CVPR'17) S-adaptation (Bar Ilan University, ICLR'17) Masking (RIKEN-AIP/UTS, NeurIPS'18)

• Learning with selected samples:

MentorNet (Google AI, ICML'18) Learning to Reweight Examples (University of Toronto, ICML'18) Co-teaching (RIKEN-AIP/UTS, NeurIPS'18)

• Learning with implicit regularization:

Virtual Adversarial Training (Preferred Networks, ICLR'16) Mean Teachers (Curious AI, NIPS'17) Temporal Ensembling (NVIDIA, ICLR'17)

A promising research line: Learning with small-loss instances

• Main idea: regard small-loss instances as "correct" instances.

Figure: Self-training MentorNet[Jiang et al., 2018].

- Benefit: easy to implement & free of assumptions.
- Drawback: accumulated error caused by sample-selection bias.

A promising research line: Learning with small-loss instances

Consider the standard class-conditional noise (CCN) model.

- We can learn a reliable classifier if a set of clean data is available.
- Then, we can use the reliable classifier to filter out the noisy data, where "small loss" serves as a gold standard.
- However, we usually only have access to noisy training data. The selected small-loss instances are only likely to be correct, instead of totally correct.
- (Problem) There exists accumulated error caused by sample-selection bias.
- (Solution 1) In order to select more correct samples, can we design a "small-loss" rule by utilizing the memorization of deep neural networks?

通知 不通

	Relat ○○ ●	ed works	Co-teaching	Co-teaching+		References
Decoupling						
		_				

Related work: Decoupling

Figure: Decoupling[Malach and Shalev-Shwartz, 2017].

- Easy samples can be quickly learnt and classified (memorization effect).
- Decoupling focus on hard samples, which can be more informative.
- Decoupling use samples in each mini-batch that two classifiers have disagreement in predictions to update networks.
- (Solution 2) Can we further attenuate the error from noisy data by utilizing two networks?

Related works 00 0	Co-teaching	Co-teaching+		References

Co-teaching: Cross-update meets small-loss

- Co-teaching maintains two networks (A & B) simultaneously.
- Each network samples its small-loss instances based on memorization of neural networks.
- Each network teaches such useful instances to its peer network. (Cross-update)

Related works 00 0	Co-teaching	Co-teaching+		References

Divergence

- Two networks in Co-teaching will converge to a consensus gradually.
- However, two networks in Disagreement will keep diverged.
- We bridge the "Disagreement" strategy with Co-teaching to achieve Co-teaching+.

Related works 00 0	Co-teaching	Co-teaching+		References

How does Disagreement Benefit Co-teaching?

- Disagreement-update step: Two networks feed forward and predict all data first, and only keep prediction disagreement data.
- Cross-update step: Based on disagreement data, each network selects its small-loss data, but back propagates such data from its peer network.

Related works 00 0	Co-teaching	Co-teaching+		References

Co-teaching+ Paradigm

1: Input $w^{(1)}$ and $w^{(2)}$, training set \mathcal{D} , batch size B, learning rate η , estimated noise rate τ , epoch E_{μ} and E_{max} : for $e = 1, 2, ..., E_{max}$ do 2: Shuffle \mathcal{D} into $\frac{|\mathcal{D}|}{\mathcal{B}}$ mini-batches: //noisy dataset for $n = 1, \ldots, \frac{|\mathcal{D}|}{|\mathcal{D}|}$ do 3: Fetch *n*-th mini-batch $\overline{\mathcal{D}}$ from \mathcal{D} : 4: Select prediction disagreement $\overline{\mathcal{D}}' = \{(x_i, y_i) : \overline{y}_i^{(1)} \neq \overline{y}_i^{(2)}\};$ 5: Get $\bar{\mathcal{D}}'^{(1)} = \arg \min_{\mathcal{D}' \mid |\mathcal{D}'| > \lambda(e) \mid \bar{\mathcal{D}}' \mid} \ell(\mathcal{D}'; w^{(1)}); //sample \lambda(e)\%$ small-loss instances 6: Get $\bar{\mathcal{D}}^{\prime(2)} = \arg \min_{\mathcal{D}^{\prime}: |\mathcal{D}^{\prime}| > \lambda(e) |\bar{\mathcal{D}}^{\prime}|} \ell(\mathcal{D}^{\prime}; w^{(2)}); //\text{sample } \lambda(e)\%$ small-loss instances 7: Update $w^{(1)} = w^{(1)} - n\nabla \ell(\bar{\mathcal{D}}^{\prime(2)}; w^{(1)}); //update w^{(1)}$ by $\bar{\mathcal{D}}^{\prime(2)};$ 8: Update $w^{(2)} = w^{(2)} - n\nabla \ell(\bar{\mathcal{D}}^{\prime(1)}; w^{(2)}); //update w^{(2)}$ by $\bar{\mathcal{D}}^{\prime(1)};$ end 9: Update $\lambda(e) = 1 - \min\{\frac{e}{E_{\nu}}\tau, \tau\}$ or $1 - \min\{\frac{e}{E_{\nu}}\tau, (1 + \frac{e-E_{k}}{E_{\nu}})\tau\}$; (memorization helps) end 10: Output $w^{(1)}$ and $w^{(2)}$. Co-teaching+: Step 4: disagreement-update; Step 5-8: cross-update.

	Related works 00 0	Co-teaching	Co-teaching+		References
Relation	s to other ap	proaches			

Table: Comparison of state-of-the-art and related techniques with our Co-teaching+ approach. "small loss": regarding small-loss samples as "clean" samples; "double classifiers": training two classifiers simultaneously; "cross update": updating parameters in a cross manner; "divergence": keeping two classifiers diverged during training.

	MentorNet	Co-training	Co-teaching	Decoupling	Co-teaching+
small loss	\checkmark	×	\checkmark	×	\checkmark
double classifiers	×	\checkmark	\checkmark	\checkmark	\checkmark
cross update	×	\checkmark	\checkmark	×	\checkmark
divergence	×	\checkmark	×	\checkmark	\checkmark

	Related works 00 0	Co-teaching	Co-teaching+	Experiments	References
D · · ·					

Datasets for CCN model

Table: Summary of data sets used in the experiments.

	# of train	# of test	# of class	size
MNIST	60,000	10,000	10	28×28
CIFAR-10	50,000	10,000	10	32×32
CIFAR-100	50,000	10,000	100	32×32
NEWS	11,314	7,532	7	1000-D
T-ImageNet	100,000	10,000	200	64×64

	Related works 00 0	Co-teaching	Co-teaching+	Experiments	References
Naico Tr	ancitions for	CCN mode	1		

Noise Transitions for CCN model

We manually generate class-conditional noisy labels using two types of noise transitions:

Figure: Different noise transitions (using 5 classes as an example) [Han et al., 2018].

IKEN & UTS)

	Related works 00 0	Co-teaching	Co-teaching+	Experiments	References
Baselines					

- MentorNet: small-loss trick;
- Co-teaching: small-loss and cross-update trick.
- Decoupling: instances that have different predictions;
- F-correction: loss correction on transition matrix;
- Standard: directly training on noisy datasets.

	Related works 00 0	Co-teaching	Co-teaching+	Experiments	References
Network	structures				

Table: MLP and CNN models used in our experiments on MNIST, CIFAR-10, CIFAR-100/Open-sets, and NEWS.

MLP on MNIST	CNN on CIFAR-10	CNN on CIFAR-100/Open-sets	MLP on NEWS
28×28 Gray Image	32×32 RGB Image	32×32 RGB Image	1000-D Text
		3×3 Conv, 64 BN, ReLU	300-D Embedding
	5×5 Conv, 6 ReLU	3×3 Conv, 64 BN, ReLU	$Flatten \to 1000{\times}300$
	2×2 Max-pool	2×2 Max-pool	Adaptive avg-pool $ ightarrow$ 16 $ imes$ 300
		3×3 Conv, 128 BN, ReLU	
Dense 28 $ imes$ 28 $ ightarrow$ 256, ReLU	5×5 Conv, 16 ReLU	3×3 Conv, 128 BN, ReLU	Dense $16{\times}300 \rightarrow 4{\times}300$
	2×2 Max-pool	2×2 Max-pool	BN, Softsign
		3×3 Conv, 196 BN, ReLU	
	Dense $16 \times 5 \times 5 \rightarrow 120$, ReLU	3×3 Conv, 196 BN, ReLU	Dense $4{\times}300 \rightarrow 300$
	Dense 120 $ ightarrow$ 84, ReLU	2×2 Max-pool	BN, Softsign
Dense 256 \rightarrow 10	Dense 84 $ ightarrow$ 10	Dense 256 $ ightarrow$ 100/10	Dense 300 \rightarrow 7

э

Introduction	Related works 00 0	Co-teaching	Co-teaching+	E×periments	Summary	References
MNIST						

(RIKEN & UTS)

Co-teaching+

Related works 00 0	Co-teaching	Co-teaching+	Experiments	References

CIFAR-10

(RIKEN & UTS)

Co-teaching+

Jun 12th, 2019 22 / 30

Related works 00 0	Co-teaching	Co-teaching+	Experiments	References

CIFAR-100

Co-teaching+

Introduction	Related works 00 0	Co-teaching	Co-teaching+	Experiments	Summary	References
NEWS						

Co-teaching+

	Related works 00 0	Co-teaching	Co-teaching+	Experiments	References
T-Imagel	Vet				

Table: Averaged/maximal test accuracy (%) of different approaches on *T-ImageNet* over last 10 epochs. The best results are in blue.

Flipping-Rate(%)	Standard	Decoupling	F-correction	MentorNet	Co-teaching	Co-teaching+
Pair-45%	26.14/26.32	26.10/26.61	0.63/0.67	26.22/26.61	27.41/27.82	26.54/26.87
Symmetry-50%	19.58/19.77	22.61/22.81	32.84/33.12	35.47/35.76	37.09/37.60	41.19/41.77
Symmetry-20%	35.56/35.80	36.28/36.97	44.37/44.50	45.49/45.74	45.60/46.36	47.73/48.20

	Related works 00 0	Co-teaching	Co-teaching+	Experiments	References
Onen-se	ts				

Open-set noise:

An open-set noisy label occurs when a noisy sample possesses a true class that is not contained within the set of known classes in the training data.

Open-sets: CIFAR-10 noisy dataset with 40% open-set noise from CIFAR-100, ImageNet32, and SVHN.

Figure: Examples of open-set noise for "airplane" in CIFAR-10 [Wang et al., 2018].

(RIKEN	&	UΤ	-S)
--------	---	----	-----

	Related works 00 0	Co-teaching	Co-teaching+	Experiments	References
Open-sets	5				

Table: Averaged/maximal test accuracy (%) of different approaches on *Open-sets* over last 10 epochs. The best results are in blue.

Open-set noise	Standard	MentorNet	Iterative[Wang et al., 2018]	Co-teaching	Co-teaching+
CIFAR-10+CIFAR-100	62.92	79.27/79.33	79.28	79.43/79.58	79.28/79.74
CIFAR-10+ImageNet-32	58.63	79.27/79.40	79.38	79.42/79.60	79.89/80.52
CIFAR-10+SVHN	56.44	79.72/79.81	77.73	80.12/80.33	80.62/80.95

ъ

A 🕨 🖌 🔸

э

	Related works 00 0	Co-teaching	Co-teaching+	Summary	References
Summary					

Conclusion:

- This paper presents Co-teaching+, a robust model for learning on noisy labels.
- Three key points towards robust training on noisy labels:
 - 1) use small-loss trick based on memorization effects of deep networks;
 - 2) cross-update parameters of two networks;
 - 3) keep two networks diverged during training.

Future work:

• Investigate the theory of Co-teaching+ from the view of disagreement-based algorithms [Wang and Zhou, 2017].

Related works 00 0	Co-teaching	Co-teaching+	Summary	References

Link to our paper:

Our poster will be: Wed Jun 12th 06:30 – 09:00 PM@Pacific Ballroom #21

Thank you very much for your attention!

Related works 00 0	Co-teaching	Co-teaching+		References

References

- Arpit, D., Jastrzebski, S., Ballas, N., Krueger, D., Bengio, E., Kanwal, M. S., Maharaj, T., Fischer, A., Courville, A., Bengio, Y., et al. (2017). A closer look at memorization in deep networks. In *International Conference on Machine Learnin*, pages 233–242.
- Han, B., Yao, Q., Yu, X., Niu, G., Xu, M., Hu, W., Tsang, I., and Sugiyama, M. (2018). Co-teaching: Robust training of deep neural networks with extremely noisy labels. In *Advances in Neural Information Processing Systems*, pages 8527–8537.
- Jiang, L., Zhou, Z., Leung, T., Li, L.-J., and Fei-Fei, L. (2018). Mentornet: Learning data-driven curriculum for very deep neural networks on corrupted labels. In *International Conference on Machine Learning*.
- Malach, E. and Shalev-Shwartz, S. (2017). Decoupling" when to update" from" how to update". In Advances in Neural Information Processing Systems, pages 960–970.
- Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition challenge. *International Journal of Computer Vision*, 115(3):211–252.
- Wang, W. and Zhou, Z.-H. (2017). Theoretical foundation of co-training and disagreement-based algorithms. arXiv preprint arXiv:1708.04403.
- Wang, Y., Liu, W., Ma, X., Bailey, J., Zha, H., Song, L., and Xia, S.-T. (2018). Iterative learning with open-set noisy labels. In IEEE Conference on Computer Vision and Pattern Recognition, pages 8688–8696.