Trainable Decoding of Sets of Sequences for Neural Sequence Models

Ashwin Kalyan

Peter Anderson

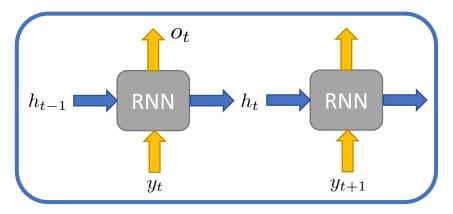
Stefan Lee

Dhruv Batra

facebook Artificial Intelligence Research

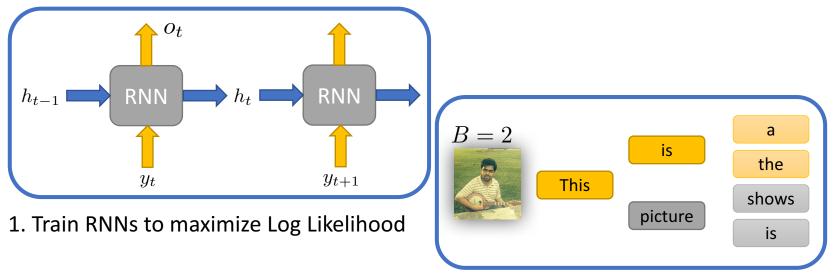
ICML 2019

Standard Sequence Prediction Pipeline



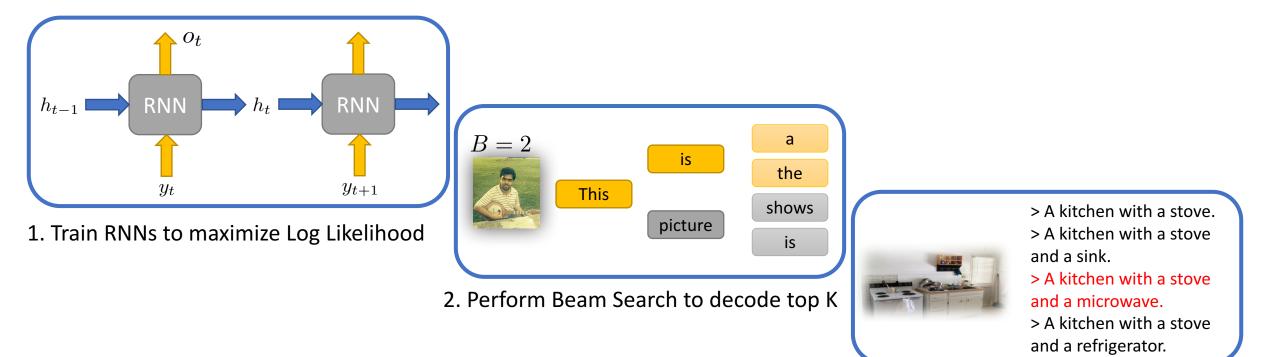
1. Train RNNs to maximize Log Likelihood

Standard Sequence Prediction Pipeline



2. Perform Beam Search to decode top K

Standard Sequence Prediction Pipeline



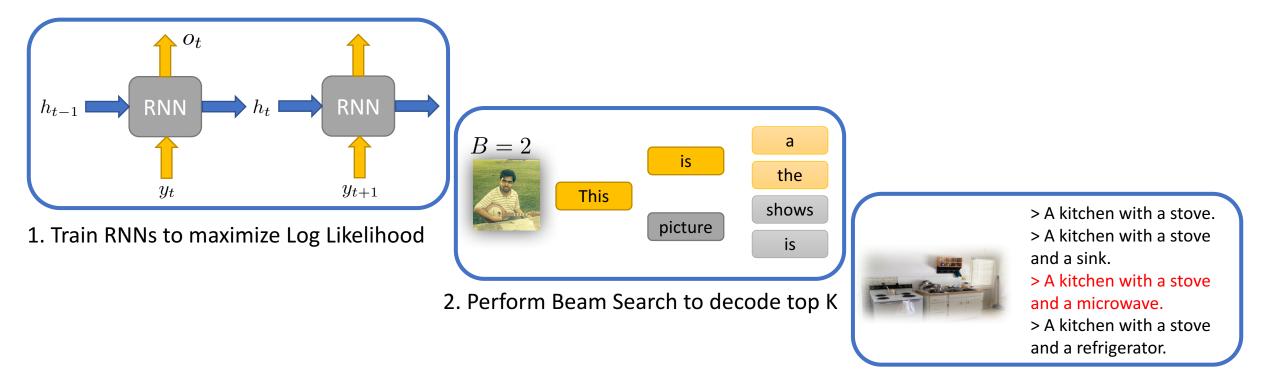
3. Return the best sequence in the top K

But... many real world tasks are multi-modal!

- $\checkmark\,$ A group of people riding horses.
- ✓ Kids riding horses with adults help.
- ✓ A girl poses on her horse in equestrian dress by a small crowd.
- ✓ Some people stand near some horses in a field.
- People are standing around children riding horses in a grassy area.
- \checkmark A small girl is riding a large light brown horse.
- ✓ A young girl in riding gear mounts a pony in front of a group.
- \checkmark A group of people with a jockey and her horse
- \checkmark Several people playing with ponies in a park.

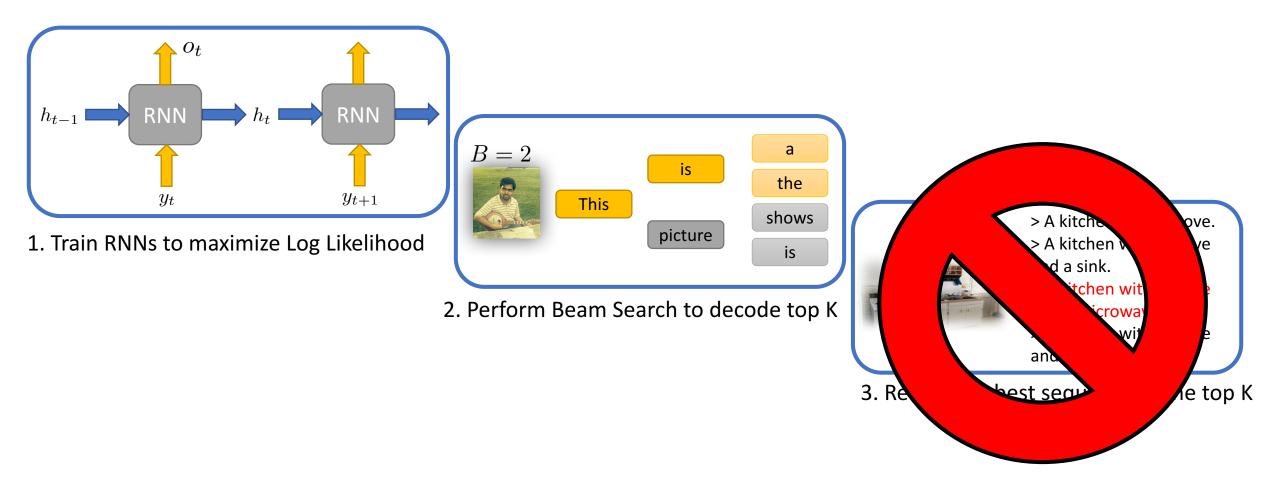
How to model more than one correct output?

Retool the Standard Sequence Prediction Pipeline



3. Return the best sequence in the top K

Retool the Standard Sequence Prediction Pipeline



Beam Search outputs are nearly identical!

- > A group of people riding horses on a field.
- A group of people riding horses in a field.
- > A group of people riding horses down a dirt road.
- A group of people riding horses through a field.
- A group of people riding on the back of horses.
- A group of people riding on the back of a horse.
- > A group of people riding on a horse.
- A couple of people riding on the back of horses.
- > A couple of people riding on the back of a horse.
- A couple of people riding horses on a field.

Doesn't model intra-set interactions!

Beam Search outputs are nearly identical!

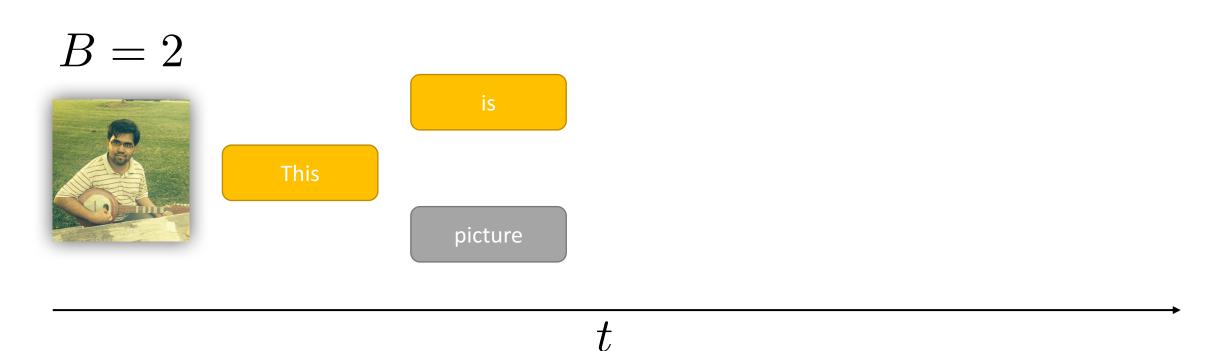
- > A group of people riding horses on a field.
- A group of people riding horses in a field.
- > A group of people riding horses down a dirt road.
- A group of people riding horses through a field.
- A group of people riding on the back of horses.
- A group of people riding on the back of a horse.
- > A group of people riding on a horse.
- A couple of people riding on the back of horses.
- > A couple of people riding on the back of a horse.
- A couple of people riding horses on a field.

Doesn't model intra-set interactions!

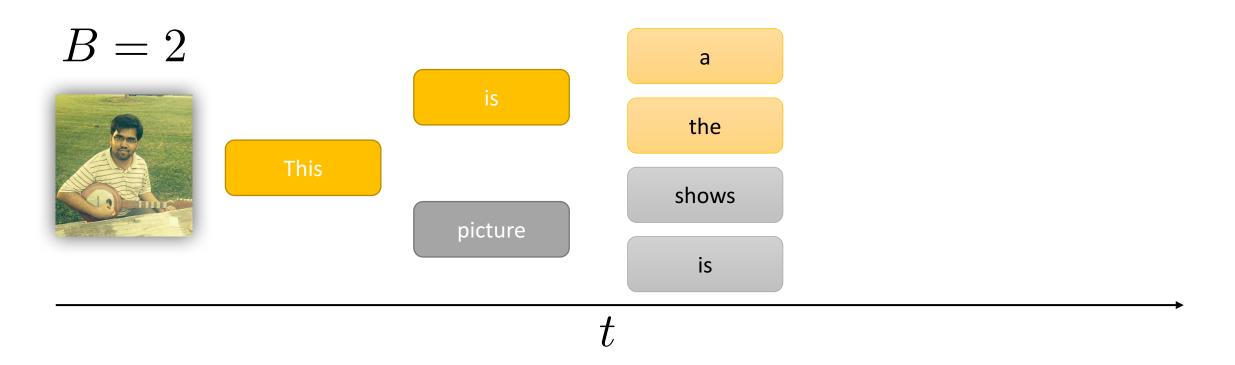
Fails to COVER the variation in the output space!

ICML 2019

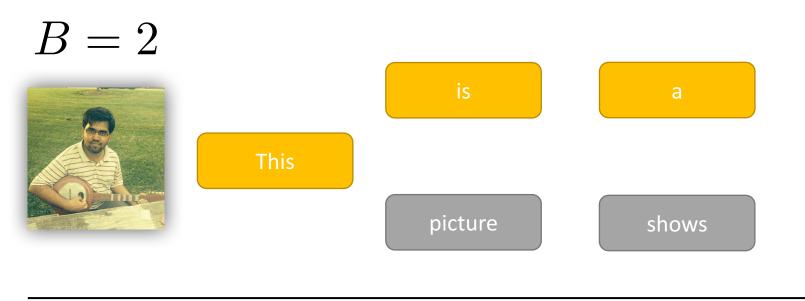
Select top-B words at each time step



Select top-B words at each time step

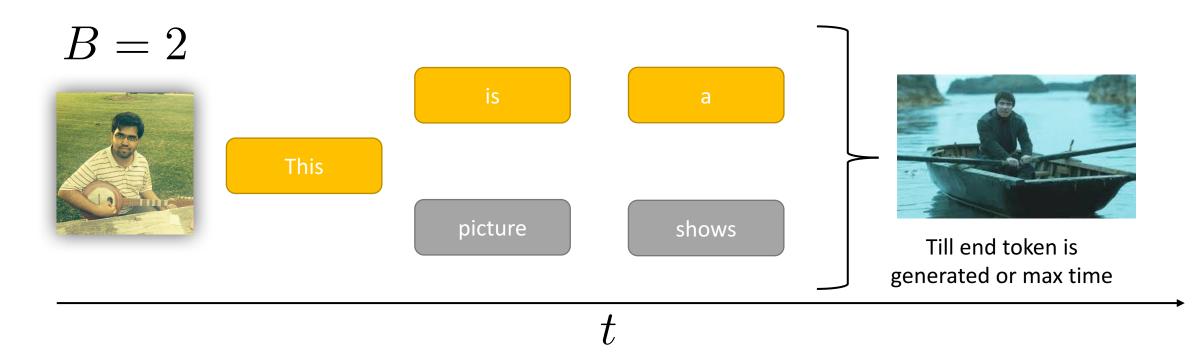


Select top-B words at each time step

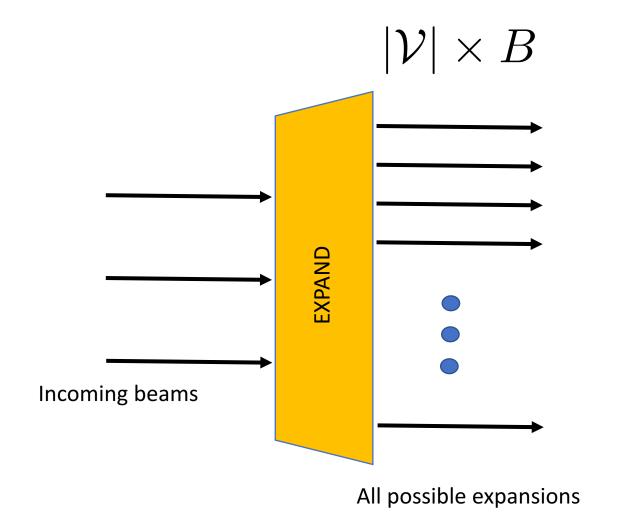


t

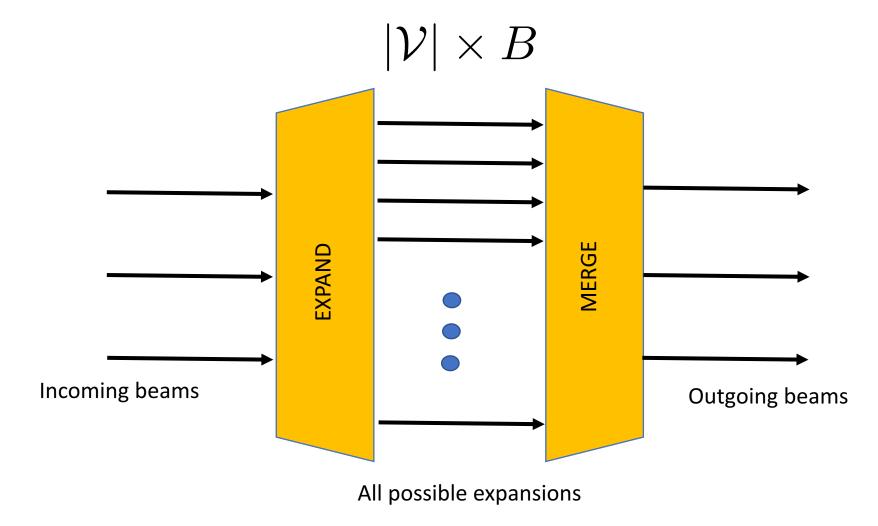
Select top-B words at each time step



Beam Search as Subset Selection

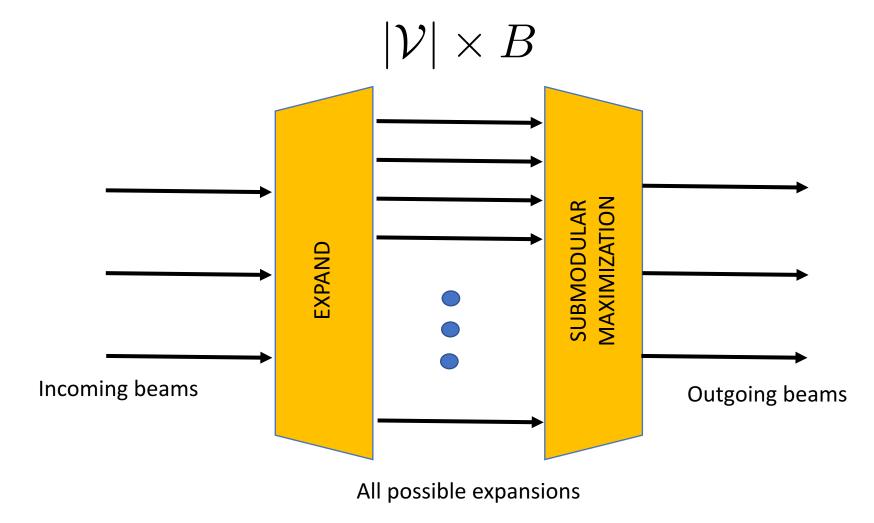


Beam Search as Subset Selection

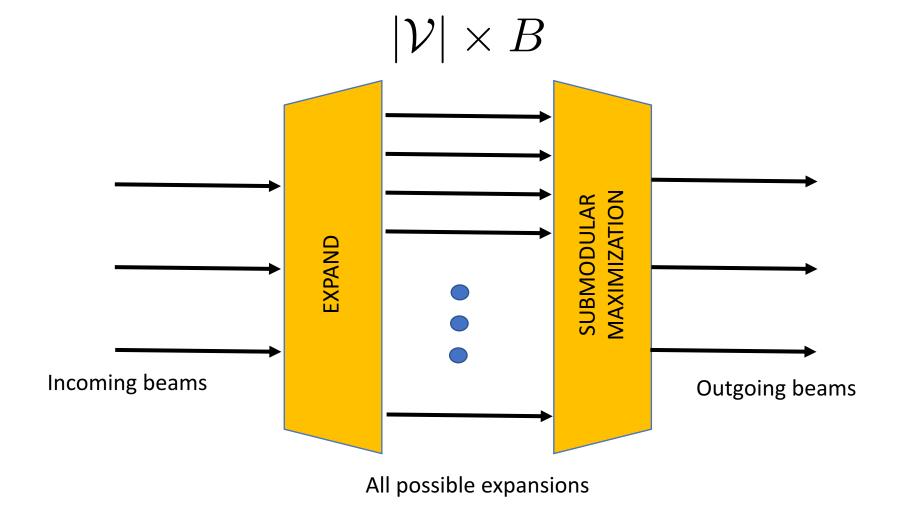


ICML 2019

Beam Search as Subset Selection



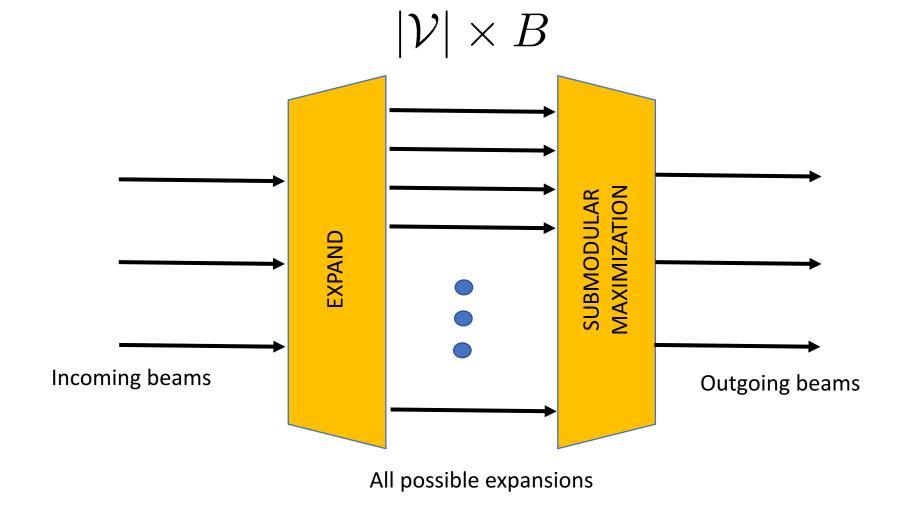
Submodular Maximization for Subset Selection



 Naturally models coverage, promoting diversity

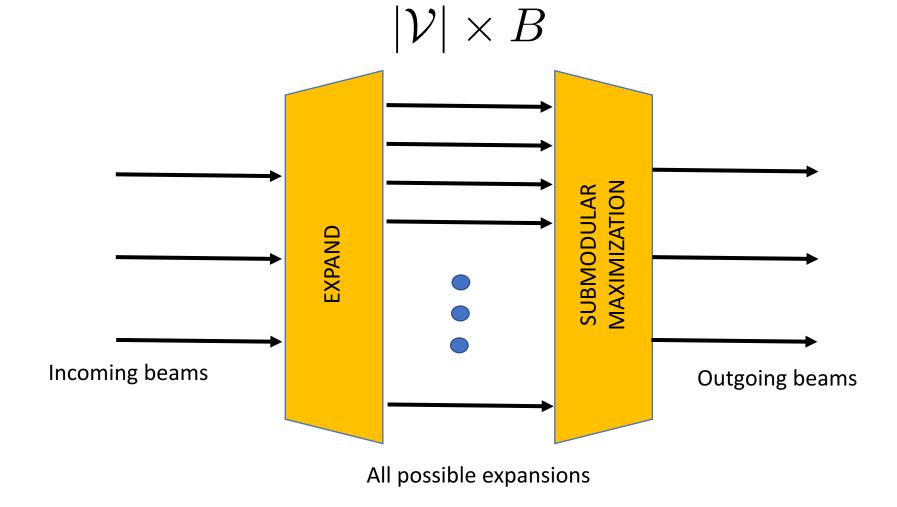
ICML 2019

Submodular Maximization for Subset Selection



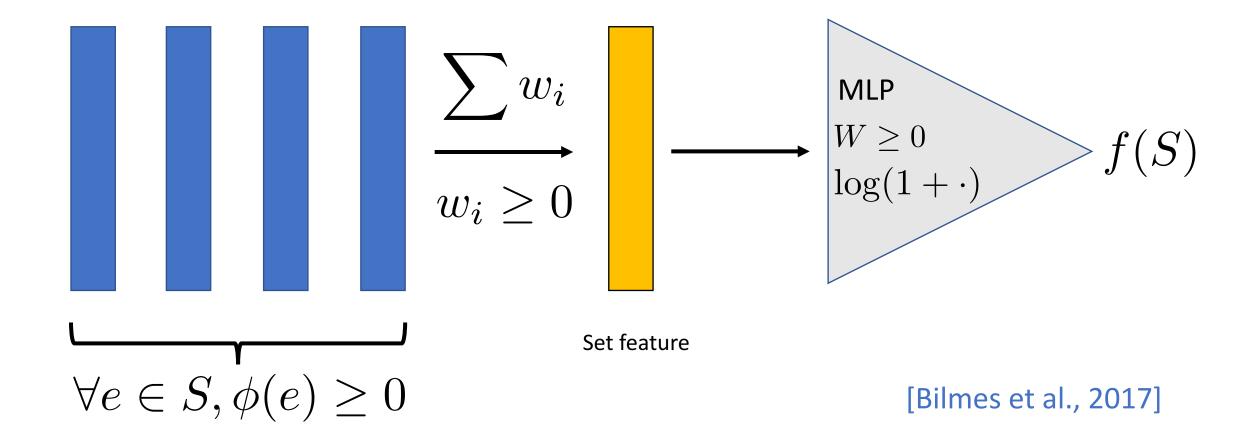
- Naturally models coverage, promoting diversity
- NP Hard!

Submodular Maximization for Subset Selection



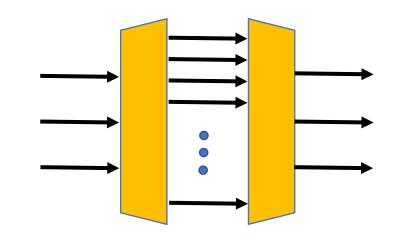
- Naturally models coverage, promoting diversity
- NP Hard!
- Greedy algorithms with approximation guarantees exist!

Learning Submodular Functions



ICML 2019

∇ BS (diff-BS)



FOR t = 1 to T:

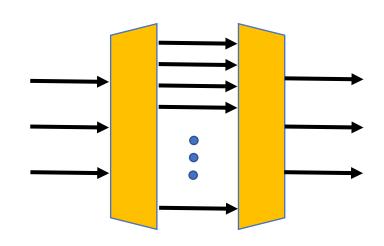
1. Construct set of all possible extensions $\mathcal{Y}_{t-1} \times |\mathcal{V}|$ FOR k = 1 to K:

2. Compute marginal gain of each

extension

3. Sample an extension proportional to marginal gain RETURN Set of K Sequences of length T

abla BS (diff-BS)



FOR t = 1 to T:

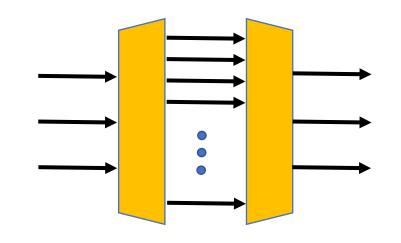
1. Construct set of all possible extensions $\mathcal{Y}_{t-1} imes |\mathcal{V}|$

FOR k = 1 to K:

- 2. Compute marginal gain of each
- extension

3. Sample an extension proportional to marginal gain RETURN Set of K Sequences of length T

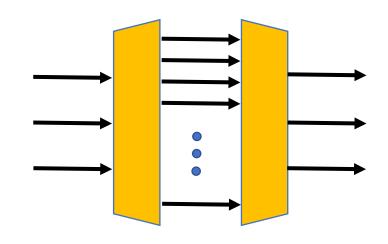
abla BS (diff-BS)



FOR t = 1 to T:

- 1. Construct set of all possible extensions $\mathcal{Y}_{t-1} \times |\mathcal{V}|$ FOR k = 1 to K:
- 2. Compute marginal gain of each
- extension
- 3. Sample an extension proportional to marginal gain RETURN Set of K Sequences of length T

∇ BS (diff-BS)



FOR t = 1 to T:

1. Construct set of all possible extensions $\mathcal{Y}_{t-1} imes |\mathcal{V}|$

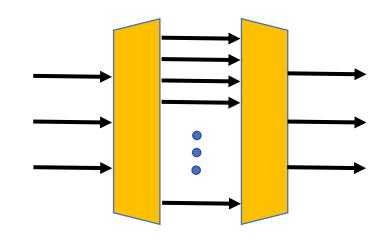
FOR k = 1 to K:

2. Compute marginal gain of each

extension

3. Sample an extension proportional to marginal gain RETURN Set of K Sequences of length T

abla BS (diff-BS)



FOR t = 1 to T:

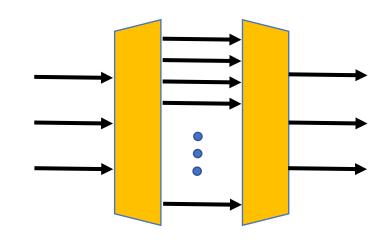
1. Construct set of all possible extensions $\mathcal{Y}_{t-1} imes |\mathcal{V}|$

FOR k = 1 to K:

- 2. Compute marginal gain of each
- extension
- 3. Sample an extension proportional to marginal gain

RETURN Set of K Sequences of length T

abla BS (diff-BS)



FOR t = 1 to T:

1. Construct set of all possible extensions $\mathcal{Y}_{t-1} imes |\mathcal{V}|$

FOR k = 1 to K:

- 2. Compute marginal gain of each
- extension

3. Sample an extension proportional to marginal gain

$\pi^* = \arg\max_{\pi\in\Pi} \mathbb{E}_{(Y_1,\dots,Y_T)\sim\pi(\cdot|\mathbf{x})} SET - METRIC(\mathbf{Y}|\mathbf{x})$

$$\pi^* = \arg\max_{\pi\in\Pi} \mathbb{E}_{(Y_1,\dots,Y_T)\sim\pi(\cdot|\mathbf{x})} SET - METRIC(\mathbf{Y}|\mathbf{x})$$

- Set-metric?
 - Oracle, average accuracy

$$\pi^* = \arg\max_{\pi\in\Pi} \mathbb{E}_{(Y_1,\dots,Y_T)\sim\pi(\cdot|\mathbf{x})} SET - METRIC(\mathbf{Y}|\mathbf{x})$$

- Set-metric?
 - Oracle, average accuracy
 - Facility Location Accuracy [NEW]

$$\pi^* = \arg\max_{\pi\in\Pi} \mathbb{E}_{(Y_1,\dots,Y_T)\sim\pi(\cdot|\mathbf{x})} SET - METRIC(\mathbf{Y}|\mathbf{x})$$

- Set-metric?
 - Oracle, average accuracy
 - Facility Location Accuracy [NEW]
- Training?
 - Teacher Forcing if multiple annotations are available.

$$\pi^* = \arg\max_{\pi\in\Pi} \mathbb{E}_{(Y_1,\dots,Y_T)\sim\pi(\cdot|\mathbf{x})} SET - METRIC(\mathbf{Y}|\mathbf{x})$$

- Set-metric?
 - Oracle, average accuracy
 - Facility Location Accuracy [NEW]
- Training?
 - Teacher Forcing if multiple annotations are available.
 - Imitation Learning if expert is available

$$\pi^* = \arg\max_{\pi\in\Pi} \mathbb{E}_{(Y_1,\dots,Y_T)\sim\pi(\cdot|\mathbf{x})} SET - METRIC(\mathbf{Y}|\mathbf{x})$$

- Set-metric?
 - Oracle, average accuracy
 - Facility Location Accuracy [NEW]
- Training?
 - Teacher Forcing if multiple annotations are available
 - Imitation Learning if expert is available
 - REINFORCE to directly optimize for the set-metric

- Novel perspective. Beam Search as Subset Selection
- Models intra-set dependencies
- Can be used with arbitrary set constraints
- No train-test or loss-evaluation mismatch
- Outperforms Beam Search and other baselines on captioning

- Novel perspective. Beam Search as Subset Selection
- Models intra-set dependencies
- Can be used with arbitrary set constraints
- No train-test or loss-evaluation mismatch
- Outperforms Beam Search and other baselines on captioning

- Novel perspective. Beam Search as Subset Selection
- Models intra-set dependencies
- Can be used with arbitrary set constraints
- No train-test or loss-evaluation mismatch
- Outperforms Beam Search and other baselines on captioning

- Novel perspective. Beam Search as Subset Selection
- Models intra-set dependencies
- Can be used with arbitrary set constraints
- No train-test or loss-evaluation mismatch
- Outperforms Beam Search and other baselines on captioning

- Novel perspective. Beam Search as Subset Selection
- Models intra-set dependencies
- Can be used with arbitrary set constraints
- No train-test or loss-evaluation mismatch
- Outperforms Beam Search and other baselines on captioning

- Novel perspective. Beam Search as Subset Selection
- Models intra-set dependencies
- Can be used with arbitrary set constraints
- No train-test or loss-evaluation mismatch
- Outperforms Beam Search and other baselines on captioning

Poster: Pacific Ballroom #48 June 13th 6:30 pm

Paper: <u>http://proceedings.mlr.press/v97/kalyan19a.html</u> Code: <u>https://github.com/ashwinkalyan/diff-bs</u>