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3.	Return	the	best	sequence	in	the	top	K

>	A	kitchen	with	a	stove.
>	A	kitchen	with	a	stove	
and	a	sink.
>	A	kitchen	with	a	stove	
and	a	microwave.
>	A	kitchen	with	a	stove	
and	a	refrigerator.
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But…	many	real	world	tasks	are	multi-modal!
ü A	group	of	people	riding	horses.
ü Kids	riding	horses	with	adults	help.
ü A	girl	poses	on	her	horse	in	equestrian	dress	by	a	small	

crowd.
ü Some	people	stand	near	some	horses	in	a	field.
ü People	are	standing	around	children	riding	horses	in	a	

grassy	area.
ü A	small	girl	is	riding	a	large	light	brown	horse.
ü A	young	girl	in	riding	gear	mounts	a	pony	in	front	of	a	

group.
ü A	group	of	people	with	a	jockey	and	her	horse
ü Several	people	playing	with	ponies	in	a	park.

How	to	model	more	than	one	correct		output?
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Beam	Search	outputs	are	nearly	identical!

Ø A	group	of	people	riding	horses	on	a	field.
Ø A	group	of	people	riding	horses	in	a	field.
Ø A	group	of	people	riding	horses	down	a	dirt	road.
Ø A	group	of	people	riding	horses	through	a	field.
Ø A	group	of	people	riding on	the	back	of	horses.
Ø A	group	of	people	riding	on	the	back	of	a	horse.
Ø A	group	of	people	riding	on a	horse.
Ø A	couple	of	people	riding	on	the	back	of	horses.
Ø A	couple	of	people	riding	on	the	back	of	a	horse.
Ø A	couple	of	people	riding horses	on	a	field.	

Doesn’t	model	intra-set	interactions!	
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Fails	to	COVER	the	variation	in	the	output	space!

Doesn’t	model	intra-set	interactions!	
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Learning	to	Decode	Sets	of	Sequences

Select	top-B	words	at	each	time	step
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Submodular	Maximization	for	Subset	Selection

• Naturally	models	
coverage,	promoting	
diversity

• NP	Hard!	
• Greedy	algorithms	
with	approximation	
guarantees	exist!	
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Learning	Submodular	Functions

X
wi

wi � 0

Set	feature

MLP
W � 0

log(1 + ·)
f(S)

8e 2 S,�(e) � 0 [Bilmes et	al.,	2017]
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FOR	t	=	1	to	T:
1.	Construct	set	of	all	possible	extensions

FOR	k	=	1	to	K:	
2.	Compute	marginal	gain	of	each	
extension
3.	Sample	an	extension	proportional	to	
marginal	gain

RETURN	Set	of	K	Sequences	of	length	T

Yt�1 ⇥ |V|

∇BS	(diff-BS)
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⇡⇤
= argmax

⇡2⇧
E(Y1,...,YT )⇠⇡(·|x)SET�METRIC(Y|x)

“Set	of	Sequences”	Level	Training

• Set-metric?	
• Oracle,	average	accuracy
• Facility	Location	Accuracy [NEW]

• Training?	
• Teacher	Forcing	if	multiple	annotations	are	available
• Imitation	Learning	if	expert	is	available
• REINFORCE	to	directly	optimize	for	the	set-metric
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• Novel	perspective.	Beam	Search	as	Subset	Selection
• Models	intra-set	dependencies	
• Can	be	used	with	arbitrary	set	constraints
• No	train-test	or	loss-evaluation	mismatch
• Outperforms	Beam	Search	and	other	baselines	on	captioning

Doesn’t	scale	very	well	with	beam	size	(some	tricks	in	the	paper)

In	Summary
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Paper:	http://proceedings.mlr.press/v97/kalyan19a.html
Code:	https://github.com/ashwinkalyan/diff-bs


