
The	Thirty-sixth	International	Conference	on	Machine	Learning

Empirical	Analysis	of	Beam	Search	Performance	
Degradation	in	Neural	Sequence	Models

Eldan Cohen J.	Christopher	Beck

1

Poster:	Pacific	Ballroom	#47



Motivation

u Most	commonly	used	inference	algorithm	for	neural	sequence	decoding

u Intuitively,	increasing	beam	width	should	lead	to	better	solutions

u In	practice,	performance	degradation	for	larger	beams
u While	the	search	finds	solutions	that	are	more	probable,	they	tend	to	have	lower	evaluation

u One	of	six	main	challenges	in	machine	translation	(Koehn	&	Knowles,	2017)

2



Beam	Search	Performance	Degradation 3

u Different	tasks:	translation,	summarization,	image	captioning

u Previous	works	highlighted	potential	explanations:
u Machine	translation:	source	copies	(Ott	et	al.,	2018)

u Image	captioning:	training	set	predictions	(Vinyals et	al.,	2017)
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Machine Translation. We use the convolutional model by Gehring et al. (2017) implemented in the
fairseq-py toolkit. We present results for two models, trained on WMT’14 En-Fr and En-De datasets
and evaluated on newstest2014 En-Fr and En-De, respectively.

Summarization. We use the abstractive summarization model by Chopra et al. (2016) implemented
in OpenNMT toolkit (Klein et al., 2017). The model is trained and evaluated using Rush et al.’s
(2015) test split of the Gigaword corpus (Graff et al., 2003).

Image Captioning. We use the model by Vinyals et al. (2017), trained on the MSCOCO dataset
(Lin et al., 2014). The test set includes 5000 images based on Karpathy & Fei-Fei’s (2015) splits.

In machine translation and summarization, we apply length normalization on the hypotheses log-
likelihood, as it was shown to reduce the performance degradation by not prioritizing short sentences
(Koehn & Knowles, 2017; Gehring et al., 2017). For image captioning, consistent with previous
works, we do not use length normalization (we also found it reduces the overall performance).

3.1 EVALUATION METRICS

While beam search finds the (approximately) most probable sequence, the quality of a sequence is
evaluated based on human references using a task-specific evaluation metric. For machine transla-
tion and image captioning we use BLEU-n (Papineni et al., 2002), a geometric average of precision
over 1- to n-grams multiplied by a brevity penalty for short sentences. As in recent literature, we
present results for BLEU-4. Corpus-level BLEU is reported without smoothing, while for sentence-
level BLEU we use smoothed n-gram counts for n > 1 (Lin & Och, 2004). For image captioning,
we also evaluated the performance using CIDEr (Vedantam et al., 2015) and SPICE (Anderson et al.,
2016b) and report these metrics in Appendix E.

For summarization, we use ROUGE (Lin, 2004), the n-gram recall between candidate summary
and a reference. We report the F-score of ROUGE-1, however similar trends were observed for the
F-score of ROUGE-L (for longest common subsequence).

4 EMPIRICAL ANALYSIS OF SEARCH DISCREPANCIES IN BEAM SEARCH

In this section we present an empirical analysis of the search discrepancies. We analyze and compare
the most likely hypotheses found by a beam search for the following beam widths: {1, 3, 5, 25, 100,
250}. Due to space, we present detailed results for one of the tasks and summarize the results for
the others. The results for all tasks and metrics can be found in Appendix A.

4.1 BASELINE RESULTS

Table 1 presents the performance of beam search with different beam widths, based on the chosen
evaluation metrics. The performance degradation for larger beam widths appears for all tested tasks
based on their task-specific evaluation metric. These results are consistent with the existing reports
of such performance degradation (Koehn & Knowles, 2017; Ott et al., 2018; Vinyals et al., 2017).

Table 1: Baseline results for different beam widths (higher values are better, best results in bold).

Task Dataset Metric B=1 B=3 B=5 B=25 B=100 B=250

Translation En-De BLEU4 25.27 26.00 26.11 25.11 23.09 21.38
En-Fr BLEU4 40.15 40.77 40.83 40.52 38.64 35.03

Summarization Gigaword R-1 F 33.56 34.22 34.16 34.01 33.67 33.23
Captioning MSCOCO BLEU4 29.66 32.36 31.96 30.04 29.87 29.79

4.2 THE DISTRIBUTION OF SEARCH DISCREPANCIES

In this section, we analyze the distribution and size of search discrepancies vs. their position (index)
in sequence. Figure 1 shows the number of discrepancies per position for the most likely hypotheses
generated by a beam search on the WMT’14 En-De test set for different beam widths (all graphs

3



Analytical	Framework:	Search	Discrepancies

u Inspired	by	search	discrepancies	in	combinatorial	search	(Harvey	&	
Ginsberg,	1995)

u Search	discrepancy	at	sequence	position	t

u Discrepancy	gap	for	position	t
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is based on the concept of search discrepancies (deviations from greedy choices) and perform an
empirical study of the distribution of such discrepancies. We make the following contributions:

1. We show that increasing the beam width leads to solutions with more and larger early dis-
crepancies. These sequences often have lower evaluation score, leading to the observed
performance degradation. As we increase the beam width, the difference between discrep-
ancies that are associated with improved vs. degraded solutions grows substantially.

2. We show that our explanatory model generalizes the previously observed copies and pre-
dictions that repeat training set targets and accounts for more of the degraded predictions.

3. Exploiting the above insights, we propose a fix that is based on constraining the discrepan-
cies considered by the beam search. An empirical analysis shows it successfully eliminates
the performance degradation.

2 PRELIMINARIES

2.1 NEURAL SEQUENCE MODELS

Given a model parameterized by ✓ and an input x, the problem of sequence generation consists of
finding a sequence ŷ such that ŷ = argmaxy2Y P✓(y | x), where Y is the set of all sequences. y is
a sequence of tokens y = {y0, ...yT�1} from vocabulary V , where T is the length of the sequence
y. The expression P✓(y | x) can then be factored as P✓(y | x) =

QT�1
t=0 P✓(yt | x; {y0, ..., yt�1}),

or for convenience using log-probability as
PT�1

t=0 logP✓(yt | x; {y0, ..., yt�1}).
It is common to model logP✓(yt | x; {y0, ..., yt�1}) using a Recurrent Neural Network (RNN),
where the sequence {y0, ..., yt�1} conditioned on is expressed by a fixed length hidden state ht.
This hidden state is updated using a non-linear function f : ht+1 = f(ht, yt).

Exhaustive search to find the globally optimal sequence is not tractable. A greedy algorithm that
selects the best candidate at each time step yt = argmaxy2V logP✓(y | x; {y0, ..., yt�1}) makes
a sequence of locally optimal decisions, but can lead to a globally sub-optimal sequence. Beam
search, in contrast, extends the B most probable partial solutions at each step, where B is called
beam width. Following Vijayakumar et al. (2018), we denote the set of B solutions held by the
beam search at step t � 1 as Y[t�1]={y1,[t�1], ..., yB,[t�1]}. At each step, beam search selects the
top scoring B candidates from the set of all possible one token extensions of its beams Yt={y[t] |
y[t�1] 2 Y[t�1] ^ yt 2 V}. Formally, the beam search candidates are updated as follows:

Y[t] = argmax
y[1,t],...,y[B,t]2Yt

X

b2[1..B]

logP✓(yb,t | x)

s.t. yi 6= yj 8i 6= j; i, j 2 [1..B]

(1)

2.2 SEARCH DISCREPANCIES IN NEURAL SEQUENCE GENERATION

In combinatorial search, a search discrepancy is a decision made by the search algorithm that is
not the most highly rated one according to the heuristic (Harvey & Ginsberg, 1995). In the context
of search for neural sequence generation, we define a search discrepancy as extending a partial
sequence with a token that is not the most probable one (i.e., different than the greedy algorithm).
More formally, a sequence y is considered to have a search discrepancy at time step t if

logP✓(yt | x; {y0, ..., yt�1}) < max
y2V

logP✓(y | x; {y0, ..., yt�1}). (2)

We denote the ratio between the most probable token and the chosen token as discrepancy gap. We
measure the gap based on the difference in log-probability, i.e., the discrepancy gap at step t is

max
y2V

log P✓(y | x; {y0, ..., yt�1})� log P✓(yt | x; {y0, ..., yt�1}). (3)

3 EXPERIMENTAL SETUP

We perform an extensive empirical evaluation over multiple tasks, models, datasets, toolkits, and
evaluation metrics. Following is a description of the experimental setup for each task.
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crepancies. These sequences often have lower evaluation score, leading to the observed
performance degradation. As we increase the beam width, the difference between discrep-
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2. We show that our explanatory model generalizes the previously observed copies and pre-
dictions that repeat training set targets and accounts for more of the degraded predictions.
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the performance degradation.
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In combinatorial search, a search discrepancy is a decision made by the search algorithm that is
not the most highly rated one according to the heuristic (Harvey & Ginsberg, 1995). In the context
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sequence with a token that is not the most probable one (i.e., different than the greedy algorithm).
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Figure 3 shows the number of discrepancies per position for WMT’14 En-De, comparing solutions
that were improved vs. solutions that were degraded. For B=5 there are 386 solutions in which
the first token is not based on a greedy decision. Of those, 200 have a better evaluation than the
greedy solution and 169 have a worse evaluation (the rest kept the same evaluation). However, as
we increase the beam width, we see that the increase in early discrepancies observed in Figure 1 is
associated mostly with degraded solutions. This result explains the observed performance degrada-
tion for larger beam widths. Similar results for the other tasks are reported in Appendix A.

Figure 3: WMT’14 En-De: Distribution of discrepancy positions for different beam widths.

Next, we compare the discrepancy gaps in degraded vs. improved solutions. Figure 4 presents the
mean discrepancy gap per position for the WMT’14 En-De dataset, for both the improved and the
degraded solutions. Interestingly, we find that the additional early discrepancies that are associated
with degraded solutions tend to have a much higher discrepancy gap compared to the ones associated
with improved solutions. Similar results for the other tasks are reported in Appendix A.

Figure 4: WMT’14 En-De: Mean discrepancy gap per position for different beam widths.

4.4 SEARCH DISCREPANCIES AND THE MOST LIKELY HYPOTHESIS

In order for a sequence with early large discrepancy to be selected by a beam search as (approxi-
mately) the most likely hypothesis, it has to be followed by tokens with higher (conditional) prob-
ability. Figure 5 shows the average (conditional) token probability for WMT’14 En-De (we use
log-scale on the x axis to highlight the early positions). For larger beam widths, the average prob-
ability of early tokens decreases (due to larger discrepancy gaps) while the average probability of
later tokens increases explaining the overall higher probability.2 Figure 5 also shows the same graph
for the improved vs. degraded solutions (compared to greedy search). For improved solutions, we
do not see significant change as we increase the beam width. For degraded solutions, however,
as we increase the beam width we find more and more early discrepancies that lead to an overall
higher probability but a worse evaluation metric value. For all tasks, we found the differences for
the degraded solutions to be larger than the improved solutions (see Appendix A).

Ott et al. (2018) observed that predicted copies have low first token probability and higher proba-
bilities for subsequent tokens. Our analysis predicts this behavior and suggests that copies are one
instance of degraded sequences. In the next section, we show that our analysis generalizes copies,
as well as training set predictions, and even accounts for more degraded sequences.

2When length normalization is not used, we should compare the product of token probabilities rather than
the average token probabilities. See Appendix A.3 for results on the unnormalized image captioning task.
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Empirical	Analysis	(WMT’14	En-De)

• Increasing	the	beam	width	leads	to	more,	early	discrepancies
• For	larger	beam	widths,	these	discrepancies	are	more	likely	to	be	
associated	with	degraded	solutions

Search	discrepancies	vs.	sequence	position
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greedy solution and 169 have a worse evaluation (the rest kept the same evaluation). However, as
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4.4 SEARCH DISCREPANCIES AND THE MOST LIKELY HYPOTHESIS

In order for a sequence with early large discrepancy to be selected by a beam search as (approxi-
mately) the most likely hypothesis, it has to be followed by tokens with higher (conditional) prob-
ability. Figure 5 shows the average (conditional) token probability for WMT’14 En-De (we use
log-scale on the x axis to highlight the early positions). For larger beam widths, the average prob-
ability of early tokens decreases (due to larger discrepancy gaps) while the average probability of
later tokens increases explaining the overall higher probability.2 Figure 5 also shows the same graph
for the improved vs. degraded solutions (compared to greedy search). For improved solutions, we
do not see significant change as we increase the beam width. For degraded solutions, however,
as we increase the beam width we find more and more early discrepancies that lead to an overall
higher probability but a worse evaluation metric value. For all tasks, we found the differences for
the degraded solutions to be larger than the improved solutions (see Appendix A).

Ott et al. (2018) observed that predicted copies have low first token probability and higher proba-
bilities for subsequent tokens. Our analysis predicts this behavior and suggests that copies are one
instance of degraded sequences. In the next section, we show that our analysis generalizes copies,
as well as training set predictions, and even accounts for more degraded sequences.

2When length normalization is not used, we should compare the product of token probabilities rather than
the average token probabilities. See Appendix A.3 for results on the unnormalized image captioning task.
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Empirical	Analysis	(WMT’14	En-De)

• As	we	increase	the	beam	width,	the	gap	of	early	discrepancies	in	
degraded	solutions	grows

Discrepancy	gap	vs.	sequence	position



Discrepancy-Constrained	Beam	Search
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• M and	N are	hyper-parameters,	tuned	on	a	held-out	validation	set.

• The	methods	successfully	eliminate	the	performance	degradation



Summary

u Analytical	framework	based	on	search	discrepancies
u Performance	degradation	is	associated	with	early	large	search	discrepancies

u Propose	two	heuristics	based	on	constraining	the	search	discrepancies
u Successfully	eliminate	the	performance	degradation.

u In	the	paper:
u Detailed	analysis	of	the	search	discrepancies
u Our	results	generalize	previous	observations	on	copies	(Ott	et	al.,	2018)	and	training	
set	predictions	(Vinyals et	al.,	2017)

u Discussion	on	the	biases	that	can	explain	the	observed	patterns
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