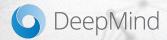
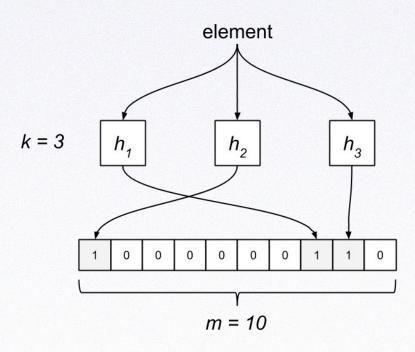
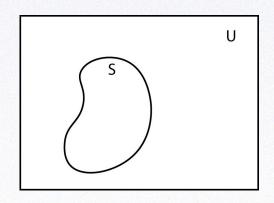
Meta-Learning Neural Bloom Filters

Jack Rae Sergey Bartunov Tim Lillicrap

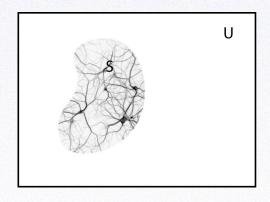
Architecture


Interested in neural networks with compressive, distributed memories.


Problem


Trend in the use of neural networks to replace classical data-structures.

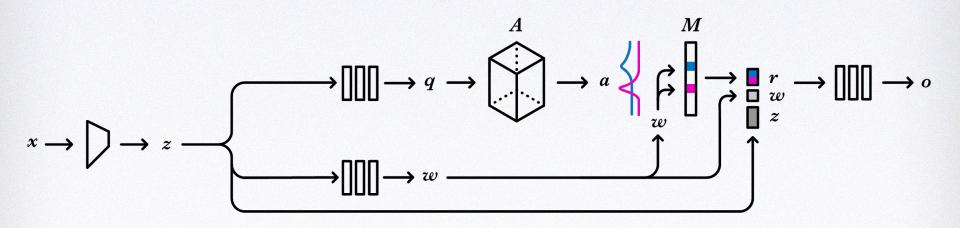

Bloom Filter




Bloom Filter

The Case for Learned Index Structures Kraska et al. (2017)

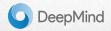
Case for Meta-Learning


Often data-structures are not created in isolation.

E.g. a Bigtable database with 10,000 tablets.

Common rowkey schema and query distribution.

Meta-learning: slow-learn common distribution, fast-learning of specific set.


Neural Bloom Filter

Database Task

	Neural Bloom Filter	Cuckoo Filter
5% FPR	35.8x	0.9x
1% FPR	32.0x	1.2x
$0.1\%~\mathrm{FPR}$	$2.9\mathrm{x}$	1.2x

Space reduction over Bloom Filter for storage set of 5,000 strings.

Speed Benchmark

	Query + 1	Insert Latency	Query Throughput (QPS)		Insert Throughput (IPS)	
	CPU	GPU	CPU	GPU	CPU	GPU
Bloom Filter [1]	$0.02 \mathrm{ms}$	-	61K		61K	
Neural Bloom Filter	$5.1 \mathrm{ms}$	$13 \mathrm{ms}$	3.5K	$105\mathrm{K}$	3.2K	101K
LSTM	$5.0\mathrm{ms}$	$13 \mathrm{ms}$	3.1K	107K	2.4K	4.6K
Learned Index [2]	$780 \mathrm{ms}$	1.36s	3.1K	107K	25	816

[1] Query-efficient Bloom Filter Chen et al. (2007) [2] A Case for Learned Index Structures Kraska et al. (2018)

Talk to me at my poster: #43

(Too small to see so you have to come to my poster for the real deal)

More experiments:

Comparisons to MemNets, DNCs, and LSTMs.

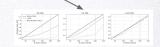
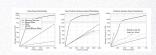
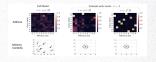





Image tasks with varying structure.

Model ablations to different learned algorithms.

