

Learning to Exploit Long-term Relational Dependencies in Knowledge Graphs

Lingbing Guo, Zequn Sun, <u>Wei Hu</u>*

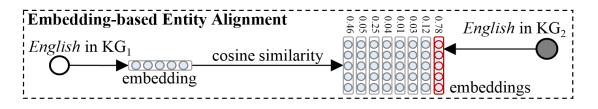
Nanjing University, China

* Corresponding author: whu@nju.edu.cn

ICML'19, June 9–15, Long Beach, CA, USA

- **Knowledge graphs** (KGs) store a wealth of structured facts about the real world
 - A fact (*s*, *r*, *o*): subject entity, relation, object entity
- KGs are far from complete and two important tasks are proposed

- Knowledge graphs (KGs) store a wealth of structured facts about the real world
 - A fact (*s*, *r*, *o*): subject entity, relation, object entity
- KGs are far from complete and two important tasks are proposed
 - Entity alignment: find entities in different KGs denoting the same real-world object



- 2. KG completion: complete missing facts in a single KG
 - E.g., predict ? in (*Tim Berners-Lee*, *employer*, ?) or (?, *employer*, *W3C*)

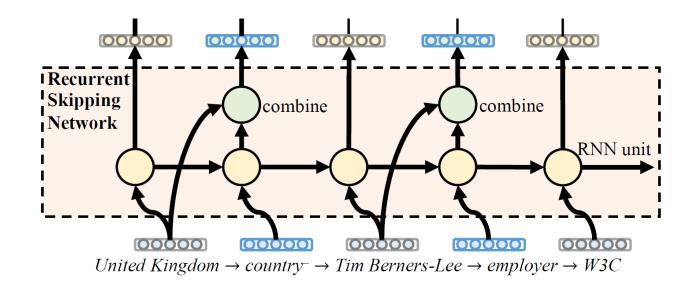
- For KG embedding, existing methods largely focus on learning from relational triples of entities
- Triple-level learning has two major limitations
 - Low expressiveness
 - Learn entity embeddings from a fairly local view (i.e., 1-hop neighbors)
 - **o** Inefficient information propagation
 - Only use triples to deliver semantic information within/across KGs

 A relational path is an entity-relation chain, where entities and relations appear alternately

United Kingdom \rightarrow country⁻ \rightarrow Tim Berners-Lee \rightarrow employer \rightarrow W3C

- RNNs perform well on sequential data
 - Limitations to leverage RNNs to model relational paths
 - 1. A relational path have two different types: "entity" and "relation"
 - Always appear in an alternating order
 - 2. A relational path is constituted by triples, but these basic structure units are overlooked by RNNs

A conditional skipping mechanism allows RSNs to shortcut the current input entity to let it directly participate in predicting its object entity



Tri-gram residual learning

Residual learning

- Let F(x) be an original mapping, and H(x) be the expected mapping
- Compared to directly optimizing F(x) to fit H(x), it is easier to optimize F(x) to fit residual part H(x)
 - An extreme case, H(x) = x

Tri-gram residual learning

Residual learning

- Let F(x) be an original mapping, and H(x) be the expected mapping
- Compared to directly optimizing F(x) to fit H(x), it is easier to optimize F(x) to fit residual part H(x)
 - An extreme case, H(x) = x

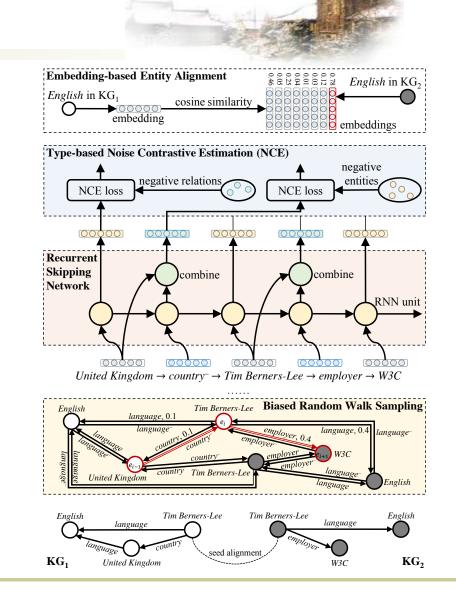
Tri-gram residual learning

- United Kingdom \rightarrow country⁻ \rightarrow Tim Berners-Lee \rightarrow employer \rightarrow W3C
- Compared to directly learning to predict *W3C* by *employer* and its mixed context, it is easier to learn the residual part between *W3C* and *Tim Berners-Lee*
 - Because they forms a triple, and we should not overlook the triple structure in the paths

(United Kingdom, country ⁻ , Tim Berners-Lee, employer, W3C)			
Models	Optimize $F([\cdot], employer)$ as		
RNNs	$F([\cdot], employer) \coloneqq W3C$		
RRNs	$F([\cdot], employer) \coloneqq W3C - [\cdot]$		
RSNs	$F([\cdot], employer) \coloneqq W3C - Tim Berners-Lee$		
[·] denotes context (<i>United Kingdom, country</i> ⁻ , <i>Tim Berners-Lee</i>)			

Architecture

- An end-to-end framework
 - **1.** Biased random walk sampling
 - Deep paths carry more relational dependencies than triples
 - Cross-KG paths deliver alignment information between KGs
 - 2. Recurrent skipping network
 - **3.** Type-based noise contrastive estimation
 - Evaluate loss in an optimized way



Experiments and results

- Entity alignment results
 - Datasets: normal & dense
 - Performed **best** on all datasets
 - Especially on the normal datasets

Hits@1	DBP-WD	DBP-YG	EN-FR	EN-DE
MTransE	22.3	24.6	25.1	31.2
IPTransE	23.1	22.7	25.5	31.3
JAPE	21.9	23.3	25.6	32.0
BootEA	32.3	31.3	31.3	44.2
GCN-Align	17.7	19.3	15.5	25.3
TransR	5.2	2.9	3.6	5.2
TransD	27.7	17.3	21.1	24.4
ConvE	5.7	11.3	9.4	0.8
RotatE	17.2	15.9	14.5	31.9
RSNs (w/o biases)	37.2	36.5	32.4	45.7
RSNs	38.8	40.0	34.7	48.7

Experiments and results

- Entity alignment results
 - Datasets: normal & dense
 - Performed **best** on all datasets
 - Especially on the normal datasets

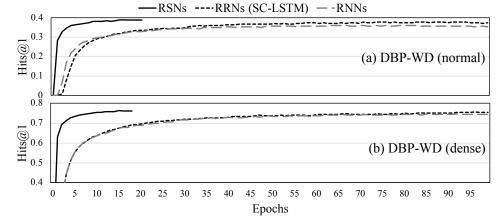
- KG completion results
 - Datasets: FB15K, WN18
 - Obtained **comparable** performance
 - Better than all translational models

Hits@1	DBP-WD	DBP-YG	EN-FR	EN-DE
MTransE	22.3	24.6	25.1	31.2
IPTransE	23.1	22.7	25.5	31.3
JAPE	21.9	23.3	25.6	32.0
BootEA	32.3	31.3	31.3	44.2
GCN-Align	17.7	19.3	15.5	25.3
TransR	5.2	2.9	3.6	5.2
TransD	27.7	17.3	21.1	24.4
ConvE	5.7	11.3	9.4	0.8
RotatE	17.2	15.9	14.5	31.9
RSNs (w/o biases)	37.2	36.5	32.4	45.7
RSNs	38.8	40.0	34.7	48.7

FB15K	Hits@1	Hits@10	MRR
TransE	30.5	73.7	0.46
TransR	37.7	76.7	0.52
TransD	31.5	69.1	0.44
ComplEx	59.9	84.0	0.69
ConvE	67.0	87.3	0.75
RotatE	74.6	88.4	0.80
RSNs (w/o cross-KG biase)	72.2	87.3	0.78

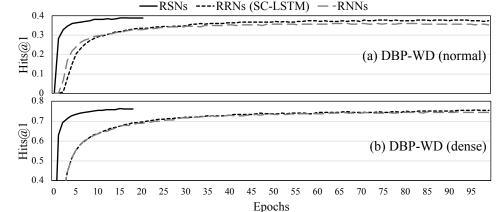
Further analysis

- RSNs vs. RNNs, RRNs [recurrent residual networks]
 - Achieved **better** results with only **1/30** epochs

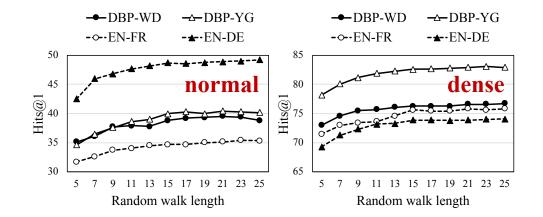


Further analysis

- RSNs vs. RNNs, RRNs [recurrent residual networks]
 - Achieved **better** results with only **1/30** epochs



- Random walk length
 - On all the datasets, increased steadily from length 5 to 15



Conclusion

- We studied path-level KG embedding learning
 - **1. RSNs:** sequence models to learn relational paths
 - 2. End-to-end framework: biased random walk sampling + RSNs
 - 3. Superior in entity alignment and competitive in KG completion
- Future work
 - Unified sequence model: relational paths & textual information

Poster: Tonight, Pacific Ballroom #42

Datasets & source code: https://github.com/nju-websoft/RSN

Acknowledgements:

- National Key R&D Program of China (No. 2018YFB1004300)
- National Natural Science Foundation of China (No. 61872172)
- Key R&D Program of Jiangsu Science and Technology Department (No. BE2018131)