Model Comparison For Semantic Grouping

Francisco Vargas & Kamen Brestnichki

Problem statement

Given two sentences, how similar would you say they are from **0** to **5**? Examples:

- The activity of learning or being trained **vs** The gradual process of acquiring knowledge **4.0**
- The act of designating a role to someone **vs** The act of designating or identifying something **1.8**

How do we quantify the odds of two sentences being in the same group?

Modelling (Bag of Word Embeddings)

We contrast two models — one that assumes both sentences were drawn from the same distribution, and one that assumes they were drawn from separate ones.

Examples of Similarities

Bayes Factor - Integrates out Parameters

 $\operatorname{sim}(\mathcal{D}_1, \mathcal{D}_2) = \log \frac{p(\mathcal{D}_1, \mathcal{D}_2 | \mathcal{M}_1)}{p(\mathcal{D}_1 | \mathcal{M}_2) p(\mathcal{D}_2 | \mathcal{M}_2)}.$ $p(\mathcal{D}_1, \mathcal{D}_2 | \mathcal{M}_1) = \int \prod_{\boldsymbol{w}_k \in \mathcal{D}_1 \oplus \mathcal{D}_2} p(\boldsymbol{w}_k | \theta) p(\theta) d\theta,$ $p(\mathcal{D}_i | \mathcal{M}_2) = \int \prod_{\boldsymbol{w}_k \in \mathcal{D}_i} p(\boldsymbol{w}_k | \theta) p(\theta) d\theta,$

• Information Theoretic Criterion (ITC) - Fits Parameters via MLE

$$\operatorname{sim}(\mathcal{D}_1, \mathcal{D}_2) = \alpha \left(\hat{\mathcal{L}}(\hat{\theta}_{1,2} | \mathcal{M}_1) - (\hat{\mathcal{L}}(\hat{\theta}_1 | \mathcal{M}_2) + \hat{\mathcal{L}}(\hat{\theta}_2 | \mathcal{M}_2)) \right) + P$$

where *P* is some penalty for \mathcal{M}_2 which has double the number of parameters.

Assumptions and Likelihoods

If word embedding length is noise, we can model unit-normed embeddings through the von Mises-Fisher (vMF) distribution.

$$p(\boldsymbol{w}|\boldsymbol{\mu},\kappa) = \frac{\kappa^{\frac{d}{2}-1}}{(2\pi)^{\frac{d}{2}}I_{\frac{d}{2}-1}(\kappa)} \exp\left(\kappa\boldsymbol{\mu}^{\top}\boldsymbol{w}\right)$$
$$= \frac{1}{Z(\kappa)} \exp\left(\kappa\boldsymbol{\mu}^{\top}\boldsymbol{w}\right),$$

Alternatively, if we word embedding length brings important information we may choose to model with the Gaussian distribution.

$$p\left(oldsymbol{w}|oldsymbol{\mu},oldsymbol{\Sigma}
ight)=\mathcal{N}\left(oldsymbol{w}|oldsymbol{\mu},oldsymbol{\Sigma}
ight)$$

Results of our methods on STS

- Gaussian likelihood gives better results than vMF

Embedding	Method	STS12	STS13	STS14	STS15	STS16
FastText	vMF+TIC	0.5219	0.5147	0.5719	0.6456	0.6347
	Diag+AIC	0.6193	0.6334	0.6721	0.7328	0.7518
GloVe	vMF+TIC	0.5421	0.5598	0.5736	0.6474	0.6168
	Diag+AIC	0.6031	0.6131	0.6445	0.7171	0.7346
Word2Vec GN	vMF+TIC	0.5665	0.5735	0.6062	0.6681	0.6510
	Diag+AIC	0.5957	0.6358	0.6614	0.7213	0.7187

- Outperforms SIF on
 - Glove
 - GN-Word2Vec
- Marginally underperforms SIF on
 - FastText

Embedding	Method	STS12	STS13	STS14	STS15	STS16
FastText	Diag+AIC	0.6193	0.6334	0.6721	0.7328	0.7518
	SIF	0.6079	0.6989	0.6777	0.7436	0.7135
	MWV	0.5994	0.6494	0.6473	0.7114	0.6814
	WMD	0.5576	0.5146	0.5915	0.6800	0.6402
GloVe	Diag+AIC	0.6031	0.6131	0.6445	0.7171	0.7346
	SIF	0.5774	0.6319	0.6135	0.6740	0.6589
	MWV	0.5526	0.5643	0.5625	0.6314	0.5804
	WMD	0.5516	0.5007	0.5811	0.6704	0.6246
Word2Vec GN	Diag+AIC	0.5957	0.6358	0.6614	0.7213	0.7187
	SIF	0.5697	0.6594	0.6669	0.7261	0.6952
	MWV	0.5744	0.6330	0.6561	0.7040	0.6617
	WMD	0.5554	0.5250	0.6074	0.6730	0.6399

THANK YOU

Method details at Pacific Ballroom #219