Linear-Complexity Data-Parallel Earth Mover's Distance Approximations

Kubilay Atasu, Thomas Mittelholzer

Earth/Word Mover's Distance: Discrete Wasserstein Distance

	Search Accuracy	Complexity	GPU friendly	Optimality
EMD/WMD	Very high	$h^3 \log h$	No	Yes
Sinkhorn	Very high	$(h^2 \log h) / \epsilon^2$	Yes	Within ϵ
RWMD	High	h	Yes	No
Our Work	Very high	hk	Yes	No

Our Solution: Iterative Constrained Transfers (ICT) Algorithm

- Approximate ICT (ACT) algorithm: only k iterations
- ICT & ACT are tighter lower bounds than RWMD: RWMD ≤ ACT ≤ ICT ≤ EMD

Experiments: Runtime vs Nearest-Neighbors-Search Accuracy

- ACT effective on sparse as well as dense, low- as well as high-dimensional datasets
- 20'000 faster than WMD and matches its search accuracy on 20 Newsgroups
- 10'000 faster and offers a slightly higher search accuracy than Sinkhorn on MNIST

20News: high-dimensional, sparse histograms **MNIST**: two-dimensional, dense histograms

WCD: Word centroid distance (Euclidean)BoW: Bag-of-Words (Cosine similarity)WMD: Word Mover's Distance (Kusner et al.)RWMD: Relaxed Word Mover's Distance

OMR and ACT-k: the new algorithms

Linear-Complexity Data-Parallel Earth Mover's Distance Approximations

Thank You!

Check-out our poster #218 in Pacific Ballroom!

