Recommendation on Data Missing Not at Random

A Doubly Robust Joint Learning Approach

Xiaojie Wang ${ }^{1}$, Rui Zhang ${ }^{1}$, Yu Sun ${ }^{2}$, and Jianzhong Qi ${ }^{1}$

${ }^{1}$ University of Melbourne, ${ }^{2}$ Twitter

Rating Matrix

	Item 1	Item 2	Item 3	\ldots	Item M
User 1	4			\ldots	
User 2			2	\ldots	
User 3		5		\ldots	5
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
User N			2	\ldots	1

Rating Prediction

	Item 1	Item 2	Item 3	\ldots	Item M
User 1	4.5	2.3	3.5	\ldots	1.8
User 2	6.7	3.9	2.9	\ldots	3.8
User 3	2.3	4.8	1.1	\ldots	5.2
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
User N	2.6	3.5	1.8	\ldots	0.7

Prediction Error

	Item 1	Item 2	Item 3	\ldots	Item M
User 1	$4.5-4=0.5$			\ldots	
User 2			$2.9-2=0.9$	\ldots	
User 3		$5-4.8=0.2$		\ldots	$5.2-5=0.2$
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
User N			$2-1.8=0.2$	\ldots	$1-0.7=0.3$

Prediction Error

	Item 1	Item 2	Item 3	\ldots	Item M
User 1	$4.5-4=0.5$	2.3	3.5	\ldots	1.8
User 2	6.7	3.9	$2.9-2=0.9$	\ldots	3.8
User 3	2.3	$5-4.8=0.2$	1.1	\ldots	$5.2-5=0.2$
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
User N	2.6	3.5	$2-1.8=0.2$	\ldots	$1-0.7=0.3$

Handling Missing Ratings: Ignore Them

$$
\frac{1}{|\mathcal{D}|} \sum_{u, i \in \mathcal{D}}\left(o_{u, i} e_{u, i}\right)
$$

When missing ratings are missing at random (MAR), the prediction error is unbiased
i.e.,

$$
\mathbb{E}_{\mathbf{O}}\left[\frac{1}{|\mathcal{D}|} \sum_{u, i \in \mathcal{D}}\left(o_{u, i} e_{u, i}\right)\right]=\frac{1}{|\mathcal{D}|} \sum_{u, i \in \mathcal{D}} e_{u, i}
$$

	Item 1	Item 2	Item 3	\ldots	Item M
User 1	0.5			\ldots	
User 2			0.9	\ldots	
User 3		0.2		\ldots	0.2
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
User N			0.2	\ldots	0.3

Missing Ratings: Missing Not at Random

- Missing ratings: missing not at random (MNAR)
- Rating for an item is missing or not: the user's rating for that item
- Producer:
- Tens of thousands of items, not randomly chosen to present
- Selection / ranking / filtering process
- User:
- Normally don't choose items randomly to watch/buy/visit
- After watching/buying/visiting, don't choose items randomly to rate, either
- Rate those they have an opinion

Can we do better when ratings are MNAR?

Handling Missing Ratings: Error Imputation

$$
\frac{1}{|\mathcal{D}|} \sum_{u, i \in \mathcal{D}}\left(o_{u, i} e_{u, i}+\left(1-o_{u, i}\right) \hat{e}_{u, i}\right)
$$

The imputed errors can be based on heuristics. For example, in an existing work [Steck 2010]:

$$
\hat{e}_{u, i}=\omega\left|\hat{r}_{u, i}-\gamma\right|
$$

	Item 1	Item 2	Item 3	\ldots	Item M
User 1	0.5	2.2	1.0	\ldots	2.7
User 2	2.2	0.6	0.9	\ldots	0.7
User 3	2.2	0.2	3.4	\ldots	0.2
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
User N	1.9	1.0	0.2	\ldots	0.3

If the imputed errors are accurate, the prediction error is unbiased

$$
\omega=1 \quad \gamma=4.5
$$

Handling Missing Ratings: Inverse Propensity

$$
\frac{1}{|\mathcal{D}|} \sum_{u, i \in \mathcal{D}} \frac{o_{u, i} e_{u, i}}{\hat{p}_{u, i}}
$$

where

$$
p_{u, i}=P\left(o_{u, i}=1 \mid r_{u, i}, \boldsymbol{x}_{u, i}\right)
$$

	Item 1	Item 2	Item 3	\ldots	Item M
User 1	$0.5^{* 1.3}$			\ldots	
User 2			$0.9^{* 2.7}$	\ldots	
User 3		$0.2^{*} 3.4$		\ldots	$0.2^{* 1.4}$
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
User N			$0.2^{*} 3.9$	\ldots	$0.3^{* 1} 1.2$

If the estimated propensities are accurate, the prediction error is unbiased

Weakness

- Error imputation based (EIB)
- Hard to accurately estimate the imputed errors
- it's almost as hard as predicting the original ratings
- Inverse propensity scoring (IPS)
- often suffers from the large variance issue
- When estimated propensity is very small, it creates a very large value

Handling Missing Ratings: Proposed Doubly Robust

$$
\frac{1}{|\mathcal{D}|} \sum_{u, i \in \mathcal{D}}\left(\frac{o_{u, i}}{\hat{p}_{u, i}} e_{u, i}+\left(1-\frac{o_{u, i}}{\hat{p}_{u, i}} \hat{e}_{u, i}\right)\right.
$$

where

$$
p_{u, i}=P\left(o_{u, i}=1 \mid r_{u, i}, \boldsymbol{x}_{u, i}\right)
$$

and $\hat{e}_{u, i}$ is the imputed error

	$o_{u, i}=0$	$o_{\mu, i}=1$
$\hat{p}_{u, i}$	$\hat{e}_{u, i}$	$\frac{e_{u, i}-\hat{e}_{u, i}}{\hat{p}_{u, i}}+\hat{e}_{u, i}$
$\hat{p}_{u, i} \rightarrow 1$		$e_{u, i}$
$\hat{p}_{u, i} \rightarrow 0$		$\approx \hat{e}_{u, i}{ }^{*}$

Doubly robust: the prediction error is unbiased when

- either the estimated propensities are accurate
- or the imputed errors are accurate

Toy Example

$$
\left.\begin{array}{cc}
\text { True Ratings } \mathbf{R} \\
{\left[\begin{array}{cc}
1 & 1 \\
1 & 5 \\
1 & 1
\end{array}\right.} & 5
\end{array}\right] \quad \begin{array}{ccc}
\text { Predicted Ratings } \hat{\mathbf{R}}
\end{array} \begin{gathered}
{\left[\begin{array}{ccc}
3 & 3 & 4 \\
3 & 3 & 4
\end{array}\right]}
\end{gathered} \longrightarrow \begin{array}{ccc}
\text { Prediction Errors E } \\
{\left[\begin{array}{ccc}
2 & 2 & 1 \\
2 & 2 & 1
\end{array}\right]}
\end{array}
$$

$$
\text { Prediction error = } 10 \text { / } 6
$$

Toy Example

Estimated error from EIB is 8 / 6

$$
\operatorname{Bias}\left(\mathcal{E}_{\text {EIB }}\right)=0.33
$$

Toy Example

Learned Propensities $\hat{\mathbf{P}}$

0.4

$$
\left[\begin{array}{ll}
6.7 & \\
& 2.5
\end{array}\right]
$$

Estimated error from IPS is 9.2 / 6

$$
\operatorname{Bias}\left(\mathcal{E}_{\mathrm{IPS}}\right)=0.13
$$

Toy Example

Observation Indicators O Prediction Errors $\mathbf{E} \quad$ Imputed Errors $\hat{\mathbf{E}} \quad$ Learned Propensities $\hat{\mathbf{P}}$ $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}2 \\ \end{array}\right.$

$$
1]\left[\begin{array}{lll}
1.5 & 1.5 & 0.5 \\
1.5 & 1.5 & 0.5
\end{array}\right]\left[\begin{array}{ll}
0.3 & \\
& 0.4
\end{array}\right]
$$

Estimated error from DR is 9.92 / 6

$$
\operatorname{Bias}\left(\mathcal{E}_{\mathrm{DR}}\right)=0.01
$$

Joint Learning

- Imputed errors are closely related to predicted ratings, e.g., $\hat{e}_{u, i}=\omega\left|\hat{r}_{u, i}-\gamma\right|$
- Accuracy of imputed errors changes when predicted ratings change
- In turn, changed imputed errors affect rating prediction training
- Joint Learning

Rating prediction model minimizes error estimated by DR estimator

$$
\mathcal{L}_{\mathrm{r}}=\sum_{u, i \in \mathcal{D}}\left(\frac{o_{u, i}}{\hat{p}_{u, i}} e_{u, i}+\left(1-\frac{o_{u, i}}{\hat{p}_{u, i}}\right) \hat{e}_{u, i}\right)
$$

Error imputation model minimizes the squared deviation

$$
\mathcal{L}_{\mathrm{e}}=\sum_{u, i \in \mathcal{O}} \frac{\left(\hat{e}_{u, i}-e_{u, i}\right)^{2}}{\hat{p}_{u, i}}
$$

Analysis of DR Estimator

Bias	$\mathcal{E}_{\text {EIB }}$ $\mathcal{E}_{\text {IPS }}$ $\mathcal{E}_{\text {DR }}$
	$\left\|\sum_{u, i \in \mathcal{D}} \frac{\left(1-p_{u, i}\right) \delta_{u, i}}{\|\mathcal{D}\|}\right\|\left\|\left\|\sum_{u, i \in \mathcal{D}} \frac{\Delta_{u, i} e_{u, i}}{\|\mathcal{D}\|}\right\|\right\|\left\|\sum_{u, i \in \mathcal{D}} \frac{\Delta_{u, i} \delta_{u, i}}{\|\mathcal{D}\|}\right\|$
Tail bound	$\left\|\mathcal{E}_{\mathrm{DR}}-\mathbb{E}_{\mathbf{O}}\left[\mathcal{E}_{\mathrm{DR}}\right]\right\| \leq \sqrt{\frac{\log \left(\frac{2}{\eta}\right)}{2\|\mathcal{D}\|^{2}} \sum_{u, i \in \mathcal{D}}\left(\frac{\delta_{u, i}}{\hat{p}_{u, i}}\right)^{2}}$
Generalization bound	$\mathcal{E}_{\mathrm{DR}}\left(\hat{\mathbf{R}}^{\ddagger}, \mathbf{R}^{o}\right)+\underbrace{\sum_{u, i \in \mathcal{D}} \frac{\left\|\Delta_{u, i} \delta_{u, i}^{\ddagger}\right\|}{\|\mathcal{D}\|}}_{\text {Bias Term }}+\underbrace{\sqrt{\frac{\log \left(\frac{2\|\mathcal{H}\|}{\eta}\right)}{2\|\mathcal{D}\|^{2}} \sum_{u, i \in \mathcal{D}}\left(\frac{\delta_{u, i}^{\S}}{\hat{p}_{u, i}}\right)^{2}}}_{\text {Variance Term }}$

Bias of DR Estimator

Lemma (Bias of DR Estimator)

Given imputed errors $\hat{\mathbf{E}}$ and learned propensities $\hat{\mathbf{P}}$ with $\hat{p}_{u, i}>0$ for all user-item pairs, the bias of the DR estimator is

$$
\operatorname{Bias}\left(\mathcal{E}_{\mathrm{DR}}\right)=\frac{1}{|\mathcal{D}|}\left|\sum_{u, i \in \mathcal{D}} \Delta_{u, i} \delta_{u, i}\right|
$$

where $\Delta_{u, i}=\frac{\hat{p}_{u, i}-p_{u, i}}{\hat{p}_{u, i}}$ and $\delta_{u, i}=e_{u, i}-\hat{e}_{u, i}$.

Corollary (Double Robustness)

The DR estimator is unbiased when either imputed errors $\hat{\mathbf{E}}$ or learned propensities $\hat{\mathbf{P}}$ are accurate for all user-item pairs.

Tail Bound of DR Estimator

Lemma (Tail Bound of DR Estimator)

Given imputed errors $\hat{\mathbf{E}}$ and learned propensities $\hat{\mathbf{P}}$, for any prediction matrix $\hat{\mathbf{R}}$, with probability $1-\eta$, the deviation of the DR estimator from its expectation has the following tail bound

$$
\left|\mathcal{E}_{\mathrm{DR}}-\mathbb{E}_{\mathbf{O}}\left[\mathcal{E}_{\mathrm{DR}}\right]\right| \leq \sqrt{\frac{\log \left(\frac{2}{\eta}\right)}{2|\mathcal{D}|^{2}} \sum_{u, i \in \mathcal{D}}\left(\frac{\delta_{u, i}}{\hat{p}_{u, i}}\right)^{2}} .
$$

Corollary (Tail Bound Comparison)

Suppose imputed errors $\hat{\mathbf{E}}$ are such that $0 \leq \hat{e}_{u, i} \leq 2 e_{\mu, i}$ for $u, i \in \mathcal{D}$, then for any learned propensities $\hat{\mathbf{P}}$, the tail bound of the DR estimator will be lower than that of the IPS estimator.

Generalization Bound

Theorem (Generalization Bound)

For any finite hypothesis space \mathcal{H} of prediction matrices, with probability $1-\eta$, the prediction inaccuracy $\mathcal{P}\left(\hat{\mathbf{R}}^{\ddagger}, \mathbf{R}^{f}\right)$ of the optimal prediction matrix using the $D R$ estimator with imputed errors $\hat{\mathbf{E}}$ and learned propensities $\hat{\mathbf{P}}$ has the upper bound

$$
\mathcal{E}_{\mathrm{DR}}\left(\hat{\mathbf{R}}^{\ddagger}, \mathbf{R}^{o}\right)+\underbrace{\sum_{u, i \in \mathcal{D}} \frac{\left|\Delta_{u, i} \delta_{u, i}^{\ddagger}\right|}{|\mathcal{D}|}}_{\text {Bias Term }}+\underbrace{\sqrt{\frac{\log \left(\frac{2|\mathcal{H}|}{\eta}\right)}{2|\mathcal{D}|^{2}} \sum_{u, i \in \mathcal{D}}\left(\frac{\delta_{u, i}^{\S}}{\hat{p}_{u, i}}\right)^{2}}}_{\text {Variance Term }},
$$

where $\delta_{u, i}^{\S}=e_{u, i}^{\S}-\hat{e}_{u, i}^{\S}$ is the error deviation corresponding to the prediction matrix $\hat{\mathbf{R}}^{\S}=\operatorname{argmax}_{\hat{\mathbf{R}}^{n} \in \mathcal{H}}\left\{\sum_{u, i \in \mathcal{D}}\left(\frac{\delta_{u, i}^{h}}{\hat{\rho}_{u, i}}\right)^{2}\right\}$.

Experiments

- MAE and MSE when test on MAR ratings

	Coat		Yaifoo	
	MAE	MSE	MAE	MSE
MF	0.920	1.257	1.154	1.891
PMF	0.903	1.239	1.103	1.709
CPT-v	0.969	1.441	0.770	1.115
MF-HI	0.922	1.261	1.158	1.905
MF-MNAR	0.884	1.214	1.177	2.175
MF-IPS	0.860	1.093	0.810	0.989
MF-JL	0.866	1.136	0.899	1.256
MF-DR-JL	$\mathbf{0 . 7 7 8}$	$\mathbf{0 . 9 9 0}$	$\mathbf{0 . 7 4 7}$	$\mathbf{0 . 9 6 6}$

[^0]
Experiments

- Estimation bias and standard deviation using synthetic data under MSE

	EIB	IPS	SNIPS	NCIS	DR
ONE	22.8 ± 1.8	20.7 ± 1.8	20.7 ± 1.8	26.0 ± 1.7	$\mathbf{9 . 9} \pm \mathbf{0 . 9}$
FOUR	64.5 ± 1.7	66.8 ± 1.8	66.8 ± 1.8	84.0 ± 1.8	$\mathbf{2 4 . 1} \pm \mathbf{0 . 6}$
ROT	18.4 ± 0.3	18.5 ± 0.3	18.5 ± 0.2	23.1 ± 0.2	$\mathbf{1 0 . 3} \pm 0.2$
SKEW	15.7 ± 0.5	14.8 ± 0.7	14.9 ± 0.5	17.8 ± 0.4	$\mathbf{1 0 . 1} \pm \mathbf{0 . 3}$
CRS	18.6 ± 0.3	16.1 ± 0.5	16.2 ± 0.3	20.7 ± 0.2	$\mathbf{9 . 0} \pm \mathbf{0 . 1}$

Take Away

- Missing ratings are not always missing at random
- Accurate estimation of the prediction error on MNAR ratings improves generalization and performance
- Doubly robust estimator often gives more accurate estimation
- Joint learning of rating prediction and error imputation achieves further improvements

Poster: Today @ Pacific Ballroom \#217

Thanks for your time! Questions?

Appendix

Missing At Random and Missing Not At Random

Missing ratings are missing at random (MAR), i.e., the probability of observing the indicator matrix only depends on the observed ratings [1]

$$
p(\mathbf{O} \mid \mathbf{R}, \mathbf{X})=p\left(\mathbf{O} \mid \mathbf{R}^{o}\right)
$$

Missing ratings are missing not at random (MNAR), e.g., the probability of a rating being missing depends on its value [2]

$$
p(\mathbf{O} \mid \mathbf{R}, \mathbf{X}) \neq p\left(\mathbf{O} \mid \mathbf{R}^{o}\right)
$$

Appendix

Table: Inaccuracy of rating prediction on MAR test ratings. Table: Inaccuracy of rating prediction on MNAR test ratings.

	COAT		YAHOO	
	MAE	MSE	MAE	MSE
FM	0.911	1.252	1.154	1.891
NFM	0.888	1.218	1.001	1.488
FM-IPS	0.853	1.086	0.810	0.989
NFM-IPS	0.832	1.065	0.798	0.979
FM-JL	0.859	1.129	1.032	1.528
NFM-JL	0.838	1.114	1.016	1.509
FM-DR-JL	0.775	0.986	0.747	0.966
NFM-DR-JL	$\mathbf{0 . 7 5 6}$	$\mathbf{0 . 9 6 7}$	$\mathbf{0 . 7 3 6}$	$\mathbf{0 . 9 5 7}$

* The bottom four rows show the proposed approaches.

	Amazon		Movie	
	MSE	MSE-SNIPS	MSE	MSE-SNIPS
MF	0.949	0.931	0.803	0.793
PMF	0.969	0.911	0.824	0.773
CPT-v	1.277	1.236	1.235	1.180
MF-HI	0.964	0.935	0.812	0.803
MF-MNAR	0.943	0.913	0.803	0.764
MF-IPS	0.956	0.924	0.819	0.780
MF-JL	$\mathbf{0 . 8 6 8}$	0.851	$\mathbf{0 . 7 6 7}$	0.756
MF-DR-JL	0.871	$\mathbf{0 . 8 4 4}$	0.782	$\mathbf{0 . 7 4 5}$

[^1]
[^0]: * MF-JL and MF-DR-JL are the proposed approaches.

[^1]: * MF-JL and MF-DR-JL are the proposed approaches.

