# Recommendation on Data Missing Not at Random

A Doubly Robust Joint Learning Approach

Xiaojie Wang<sup>1</sup>, Rui Zhang<sup>1</sup>, **Yu Sun**<sup>2</sup>, and Jianzhong Qi<sup>1</sup>

<sup>1</sup>University of Melbourne, <sup>2</sup>Twitter

### Rating Matrix

|        | Item 1 | Item 2 | Item 3 | <br>Item M |
|--------|--------|--------|--------|------------|
| User 1 | 4      |        |        |            |
| User 2 |        |        | 2      |            |
| User 3 |        | 5      |        | <br>5      |
|        |        |        |        | <br>       |
| User N |        |        | 2      | <br>1      |

### **Rating Prediction**

|        | Item 1 | Item 2 | Item 3 | <br>Item M |
|--------|--------|--------|--------|------------|
| User 1 | 4.5    | 2.3    | 3.5    | <br>1.8    |
| User 2 | 6.7    | 3.9    | 2.9    | <br>3.8    |
| User 3 | 2.3    | 4.8    | 1.1    | <br>5.2    |
|        |        |        |        | <br>       |
| User N | 2.6    | 3.5    | 1.8    | <br>0.7    |

### **Prediction Error**

|        | Item 1        | Item 2        | Item 3        | <br>Item M        |
|--------|---------------|---------------|---------------|-------------------|
| User 1 | 4.5 - 4 = 0.5 |               |               |                   |
| User 2 |               |               | 2.9 - 2 = 0.9 |                   |
| User 3 |               | 5 - 4.8 = 0.2 |               | <br>5.2 - 5 = 0.2 |
|        |               |               |               | <br>              |
| User N |               |               | 2 - 1.8 = 0.2 | <br>1 - 0.7 = 0.3 |

### **Prediction Error**

|        | Item 1        | Item 2        | Item 3        | <br>Item M        |
|--------|---------------|---------------|---------------|-------------------|
| User 1 | 4.5 - 4 = 0.5 | 2.3           | 3.5           | <br>1.8           |
| User 2 | 6.7           | 3.9           | 2.9 - 2 = 0.9 | <br>3.8           |
| User 3 | 2.3           | 5 - 4.8 = 0.2 | 1.1           | <br>5.2 - 5 = 0.2 |
|        |               |               |               | <br>              |
| User N | 2.6           | 3.5           | 2 - 1.8 = 0.2 | <br>1 - 0.7 = 0.3 |

### Handling Missing Ratings: Ignore Them

$$rac{1}{|\mathcal{D}|} \sum_{u,i\in\mathcal{D}} (o_{u,i}e_{u,i})$$

When missing ratings are **missing at random** (**MAR**), the prediction error is unbiased

i.e.,

$$\mathbb{E}_{\mathbf{O}}\left[\frac{1}{|\mathcal{D}|}\sum_{u,i\in\mathcal{D}}(o_{u,i}e_{u,i})\right] = \frac{1}{|\mathcal{D}|}\sum_{u,i\in\mathcal{D}}e_{u,i}$$

|        | Item 1 | Item 2 | Item 3 | <br>Item M |
|--------|--------|--------|--------|------------|
| User 1 | 0.5    |        |        |            |
| User 2 |        |        | 0.9    |            |
| User 3 |        | 0.2    |        | <br>0.2    |
|        |        |        |        | <br>       |
| User N |        |        | 0.2    | <br>0.3    |

### Missing Ratings: Missing Not at Random

- Missing ratings: **missing not at random (MNAR**)
- Rating for an item is missing or not: the user's rating for that item
- Producer:
  - Tens of thousands of items, not randomly chosen to present
  - Selection / ranking / filtering process
- User:
  - Normally don't choose items randomly to watch/buy/visit
  - After watching/buying/visiting, don't choose items randomly to rate, either
    - Rate those they have an opinion

Can we **do better** when ratings are MNAR?

### Handling Missing Ratings: Error Imputation

$$rac{1}{|\mathcal{D}|} \sum_{u,i\in\mathcal{D}} (o_{u,i}e_{u,i} + (1-o_{u,i})\hat{e}_{u,i})$$

The imputed errors can be based on heuristics. For example, in an existing work [Steck 2010]:

$$\hat{e}_{u,i} = \omega |\hat{r}_{u,i} - \gamma|$$

|        | Item 1 | Item 2 | Item 3 | <br>Item M |
|--------|--------|--------|--------|------------|
| User 1 | 0.5    | 2.2    | 1.0    | <br>2.7    |
| User 2 | 2.2    | 0.6    | 0.9    | <br>0.7    |
| User 3 | 2.2    | 0.2    | 3.4    | <br>0.2    |
|        |        |        |        | <br>       |
| User N | 1.9    | 1.0    | 0.2    | <br>0.3    |

 $\omega = 1$   $\gamma = 4.5$ 

If the imputed errors are accurate, the prediction error is unbiased

### Handling Missing Ratings: Inverse Propensity

| $\frac{1}{1-1}\sum \frac{o_{u,i}e_{u,i}}{1-1}$                     |        | Item 1                | Item 2                | Item 3                | <br>Item M                |
|--------------------------------------------------------------------|--------|-----------------------|-----------------------|-----------------------|---------------------------|
| $ \mathcal{D}  \underset{u,i\in\mathcal{D}}{\simeq} \hat{p}_{u,i}$ | User 1 | 0.5* <mark>1.3</mark> |                       |                       |                           |
| where                                                              | User 2 |                       |                       | 0.9*2.7               |                           |
| $p_{u,i} = P(o_{u,i} = 1   r_{u,i}, \mathbf{x}_{u,i})$             | User 3 |                       | 0.2 <mark>*3.4</mark> |                       | <br>0.2 <mark>*1.4</mark> |
|                                                                    |        |                       |                       |                       | <br>                      |
|                                                                    | User N |                       |                       | 0.2* <mark>3.9</mark> | <br>0.3 <b>*1.2</b>       |

If the estimated propensities are accurate, the prediction error is unbiased

### Weakness

- Error imputation based (EIB)
  - Hard to accurately estimate the imputed errors
  - it's almost as hard as predicting the original ratings
- Inverse propensity scoring (IPS)
  - often suffers from the large variance issue
  - When estimated propensity is very small, it creates a very large value

### Handling Missing Ratings: Proposed Doubly Robust

and  $\hat{e}_{u,i}$  is the imputed error

 $egin{aligned} egin{aligned} egi$ 

\* when imputed error is close to the true error

**Doubly robust**: the prediction error is unbiased when

- **either** the estimated propensities are accurate
- or the imputed errors are accurate

### Toy Example



Prediction error = 10 / 6





Estimated error from EIB is 8 / 6

 $\operatorname{Bias}(\mathcal{E}_{\operatorname{EIB}}) = 0.33$ 





Estimated error from IPS is 9.2 / 6

 $\operatorname{Bias}(\mathcal{E}_{\mathrm{IPS}}) = 0.13$ 

### Toy Example



 $\operatorname{Bias}(\mathcal{E}_{\mathrm{DR}}) = 0.01$ 

### Joint Learning

- Imputed errors are closely related to predicted ratings, e.g.,  $\hat{e}_{u,i} = \omega |\hat{r}_{u,i} \gamma|$ 
  - Accuracy of imputed errors changes when predicted ratings change
  - In turn, changed imputed errors affect rating prediction training
- Joint Learning

Rating prediction model minimizes error estimated by DR estimator

Error imputation model minimizes the squared deviation

$$\mathcal{L}_{\mathrm{r}} = \sum_{u,i\in\mathcal{D}} \left( \frac{o_{u,i}}{\hat{p}_{u,i}} e_{u,i} + (1 - \frac{o_{u,i}}{\hat{p}_{u,i}}) \hat{e}_{u,i} \right) \qquad \mathcal{L}_{\mathrm{e}} = \sum_{u,i\in\mathcal{O}} \frac{(\hat{e}_{u,i} - e_{u,i})^2}{\hat{p}_{u,i}}$$

### Analysis of DR Estimator



### **Bias of DR Estimator**

#### Lemma (Bias of DR Estimator)

Given imputed errors  $\hat{\mathbf{E}}$  and learned propensities  $\hat{\mathbf{P}}$  with  $\hat{p}_{u,i} > 0$  for all user-item pairs, the bias of the DR estimator is

$$\mathsf{Bias}(\mathcal{E}_{\mathrm{DR}}) = rac{1}{|\mathcal{D}|} \Bigg| \sum_{u,i \in \mathcal{D}} \Delta_{u,i} \delta_{u,i}$$

where 
$$\Delta_{u,i} = \frac{\hat{p}_{u,i} - p_{u,i}}{\hat{p}_{u,i}}$$
 and  $\delta_{u,i} = e_{u,i} - \hat{e}_{u,i}$ .

#### Corollary (Double Robustness)

The DR estimator is unbiased when either imputed errors  $\hat{\mathbf{E}}$  or learned propensities  $\hat{\mathbf{P}}$  are accurate for all user-item pairs.

### Tail Bound of DR Estimator

#### Lemma (Tail Bound of DR Estimator)

Given imputed errors  $\hat{\mathbf{E}}$  and learned propensities  $\hat{\mathbf{P}}$ , for any prediction matrix  $\hat{\mathbf{R}}$ , with probability  $1 - \eta$ , the deviation of the DR estimator from its expectation has the following tail bound

$$\left|\mathcal{E}_{\mathrm{DR}} - \mathbb{E}_{\mathbf{0}}[\mathcal{E}_{\mathrm{DR}}]\right| \leq \sqrt{\frac{\log\left(\frac{2}{\eta}\right)}{2|\mathcal{D}|^2}} \sum_{u,i\in\mathcal{D}} \left(\frac{\delta_{u,i}}{\hat{p}_{u,i}}\right)^2.$$

#### Corollary (Tail Bound Comparison)

Suppose imputed errors  $\hat{\mathbf{E}}$  are such that  $0 \leq \hat{e}_{u,i} \leq 2e_{u,i}$  for  $u, i \in \mathcal{D}$ , then for any learned propensities  $\hat{\mathbf{P}}$ , the tail bound of the DR estimator will be lower than that of the IPS estimator.

### **Generalization Bound**

#### Theorem (Generalization Bound)

For any finite hypothesis space  $\mathcal{H}$  of prediction matrices, with probability  $1 - \eta$ , the prediction inaccuracy  $\mathcal{P}(\hat{\mathbf{R}}^{\ddagger}, \mathbf{R}^{f})$  of the optimal prediction matrix using the DR estimator with imputed errors  $\hat{\mathbf{E}}$  and learned propensities  $\hat{\mathbf{P}}$  has the upper bound



where  $\delta_{u,i}^{\S} = e_{u,i}^{\S} - \hat{e}_{u,i}^{\S}$  is the error deviation corresponding to the prediction matrix  $\hat{\mathbf{R}}^{\S} = \operatorname{argmax}_{\hat{\mathbf{R}}^h \in \mathcal{H}} \left\{ \sum_{u,i \in \mathcal{D}} \left( \frac{\delta_{u,i}^h}{\hat{p}_{u,i}} \right)^2 \right\}.$ 

### Experiments

• MAE and MSE when test on MAR ratings

|          | Co           | COAT         |              | OOF          |
|----------|--------------|--------------|--------------|--------------|
|          | MAE          | MSE          | MAE          | MSE          |
| MF       | 0.920        | 1.257        | 1.154        | 1.891        |
| PMF      | 0.903        | 1.239        | 1.103        | 1.709        |
| CPT-v    | 0.969        | 1.441        | 0.770        | 1.115        |
| MF-HI    | 0.922        | 1.261        | 1.158        | 1.905        |
| MF-MNAR  | 0.884        | 1.214        | 1.177        | 2.175        |
| MF-IPS   | 0.860        | 1.093        | 0.810        | 0.989        |
| MF-JL    | 0.866        | 1.136        | 0.899        | 1.256        |
| MF-DR-JL | <b>0.778</b> | <b>0.990</b> | <b>0.747</b> | <b>0.966</b> |

\* MF-JL and MF-DR-JL are the proposed approaches.

### Experiments

• Estimation bias and standard deviation using synthetic data under MSE

|                | EIB              | IPS            | SNIPS          | NCIS           | DR                               |
|----------------|------------------|----------------|----------------|----------------|----------------------------------|
| One            | 22.8±1.8         | 20.7±1.8       | 20.7±1.8       | 26.0±1.7       | 9.9±0.9                          |
| Four           | 64.5±1.7         | $66.8{\pm}1.8$ | $66.8{\pm}1.8$ | $84.0{\pm}1.8$ | $\textbf{24.1}{\pm}\textbf{0.6}$ |
| Rot            | 18.4±0.3         | $18.5{\pm}0.3$ | $18.5{\pm}0.2$ | $23.1{\pm}0.2$ | <b>10.3</b> ±0.2                 |
| Skew           | $15.7{\pm}0.5$   | $14.8{\pm}0.7$ | $14.9{\pm}0.5$ | $17.8{\pm}0.4$ | $10.1{\pm}0.3$                   |
| $\mathbf{CRS}$ | $18.6 {\pm} 0.3$ | $16.1{\pm}0.5$ | $16.2{\pm}0.3$ | $20.7{\pm}0.2$ | $9.0{\pm}0.1$                    |

### Take Away

- Missing ratings are **not always missing at random**
- Accurate estimation of the prediction error on MNAR ratings improves generalization and performance
- Doubly robust estimator often gives more accurate estimation
- Joint learning of rating prediction and error imputation achieves further improvements

### Poster: Today @ Pacific Ballroom #217

## Thanks for your time! Questions?

### Appendix

### Missing At Random and Missing Not At Random

Missing ratings are *missing at random* (MAR), i.e., the probability of observing the indicator matrix only depends on the observed ratings [1]

 $p(\mathbf{O}|\mathbf{R},\mathbf{X}) = p(\mathbf{O}|\mathbf{R}^{o})$ 

Missing ratings are *missing not at random* (MNAR), e.g., the probability of a rating being missing depends on its value [2]

 $p(\mathbf{O}|\mathbf{R},\mathbf{X}) \neq p(\mathbf{O}|\mathbf{R}^{o})$ 

### Appendix

Table: Inaccuracy of rating prediction on MAR test ratings. Table: Inaccuracy of rating prediction on MNAR test ratings.

|           | Co           | Coat         |              | HOO          |
|-----------|--------------|--------------|--------------|--------------|
|           | MAE          | MSE          | MAE          | MSE          |
| FM        | 0.911        | 1.252        | 1.154        | 1.891        |
| NFM       | 0.888        | 1.218        | 1.001        | 1.488        |
| FM-IPS    | 0.853        | 1.086        | 0.810        | 0.989        |
| NFM-IPS   | 0.832        | 1.065        | 0.798        | 0.979        |
| FM-JL     | 0.859        | 1.129        | 1.032        | 1.528        |
| NFM-JL    | 0.838        | 1.114        | 1.016        | 1.509        |
| FM-DR-JL  | 0.775        | 0.986        | 0.747        | 0.966        |
| NFM-DR-JL | <b>0.756</b> | <b>0.967</b> | <b>0.736</b> | <b>0.957</b> |

 $^*$  The bottom four rows show the proposed approaches.

|          | Amazon |           | Movie |           |
|----------|--------|-----------|-------|-----------|
|          | MSE    | MSE-SNIPS | MSE   | MSE-SNIPS |
| ЛF       | 0.949  | 0.931     | 0.803 | 0.793     |
| PMF      | 0.969  | 0.911     | 0.824 | 0.773     |
| CPT-v    | 1.277  | 1.236     | 1.235 | 1.180     |
| ∕IF-HI   | 0.964  | 0.935     | 0.812 | 0.803     |
| MF-MNAR  | 0.943  | 0.913     | 0.803 | 0.764     |
| MF-IPS   | 0.956  | 0.924     | 0.819 | 0.780     |
| ∕IF-JL   | 0.868  | 0.851     | 0.767 | 0.756     |
| MF-DR-JL | 0.871  | 0.844     | 0.782 | 0.745     |

<sup>\*</sup> MF-JL and MF-DR-JL are the proposed approaches.