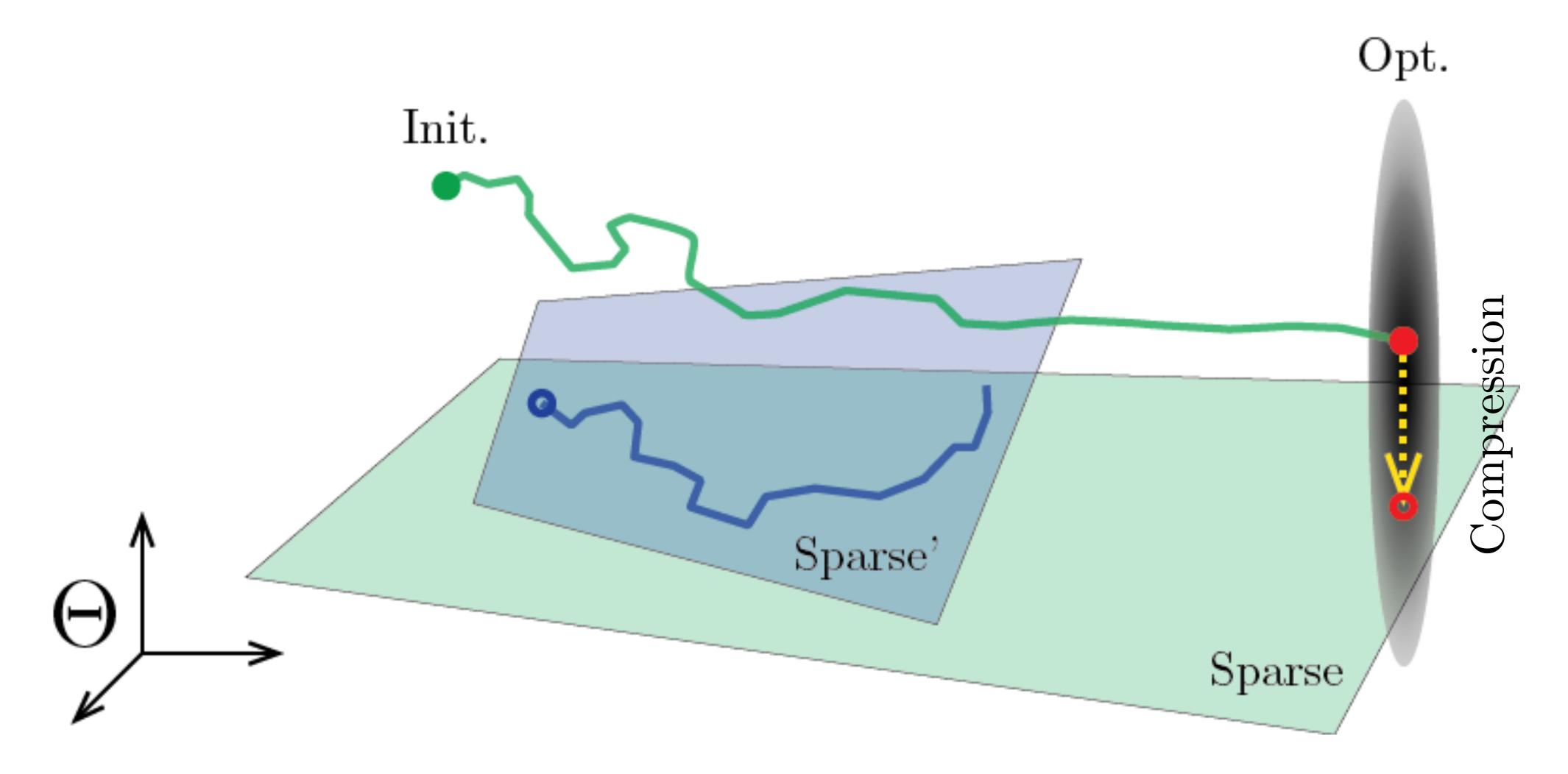


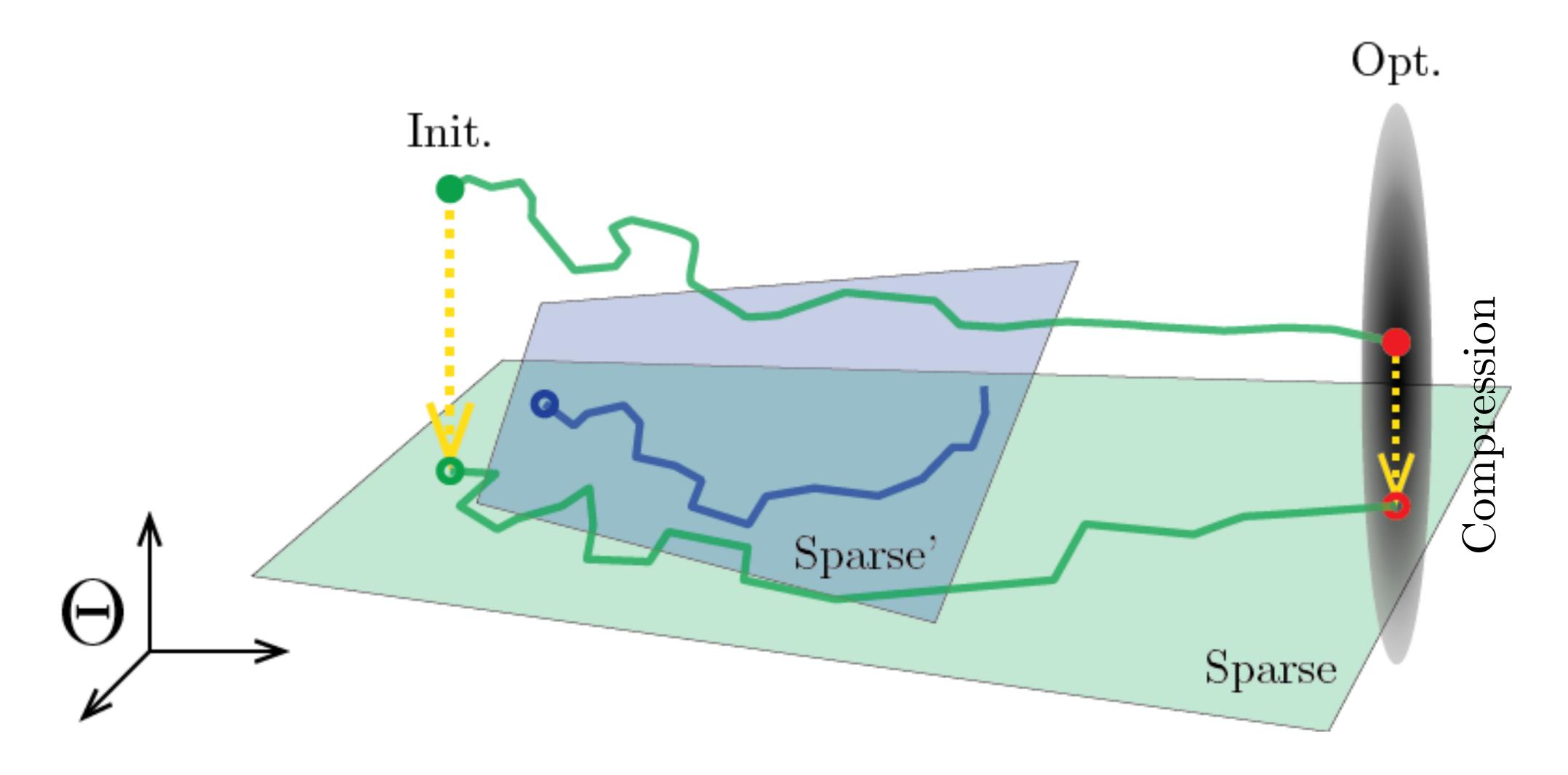
Parameter efficient training of deep convolutional neural networks by dynamic sparse reparameterization

Hesham Mostafa (Intel Al)
Xin Wang (Intel Al, Cerebras Systems)

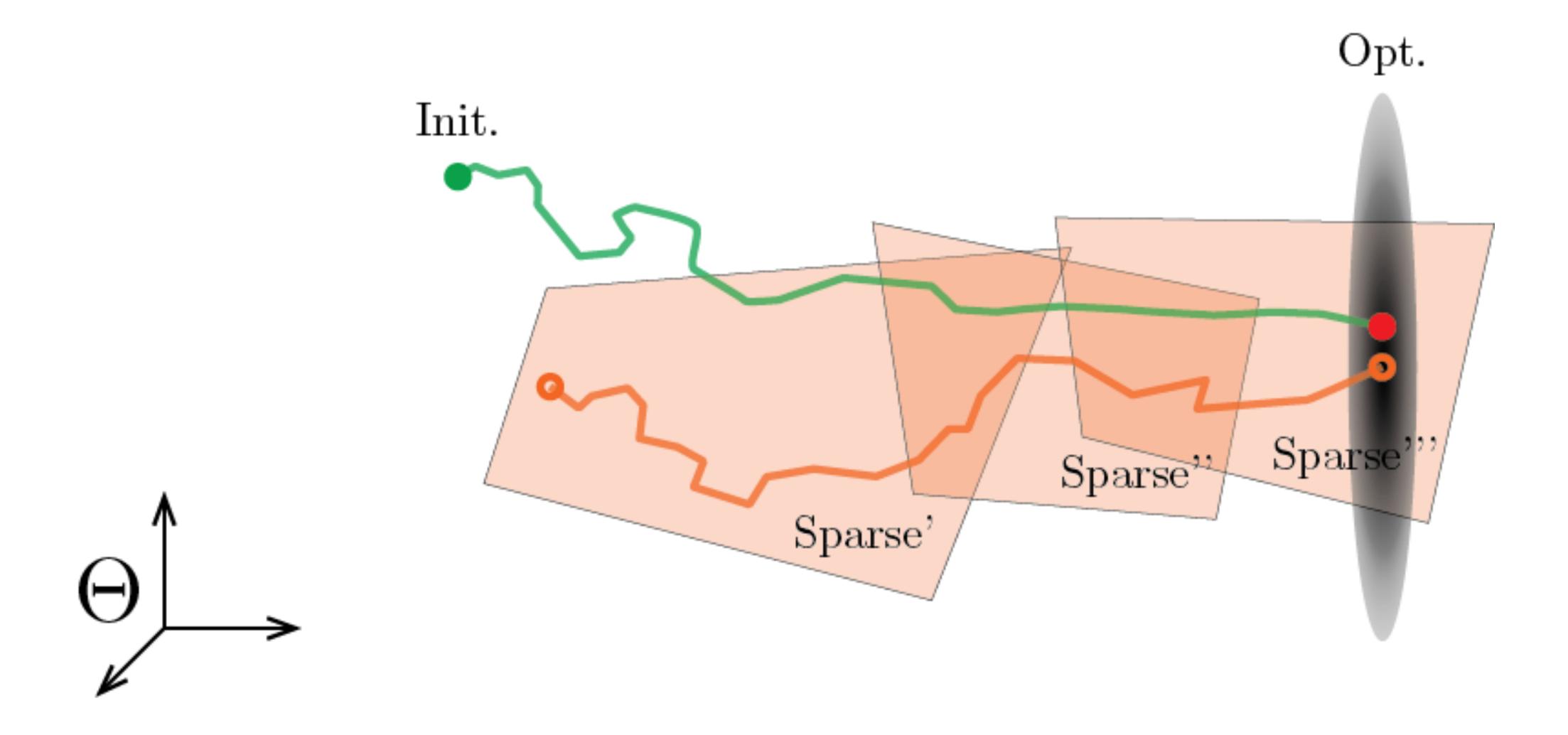
Easy: post-training (sparse) compression **Hard**: direct training of sparse networks



"Winning lottery tickets" (Frankle & Carbin 2018): post hoc identification of trainable sparse nets



Dynamic sparse reparameterization (ours): training-time structural exploration



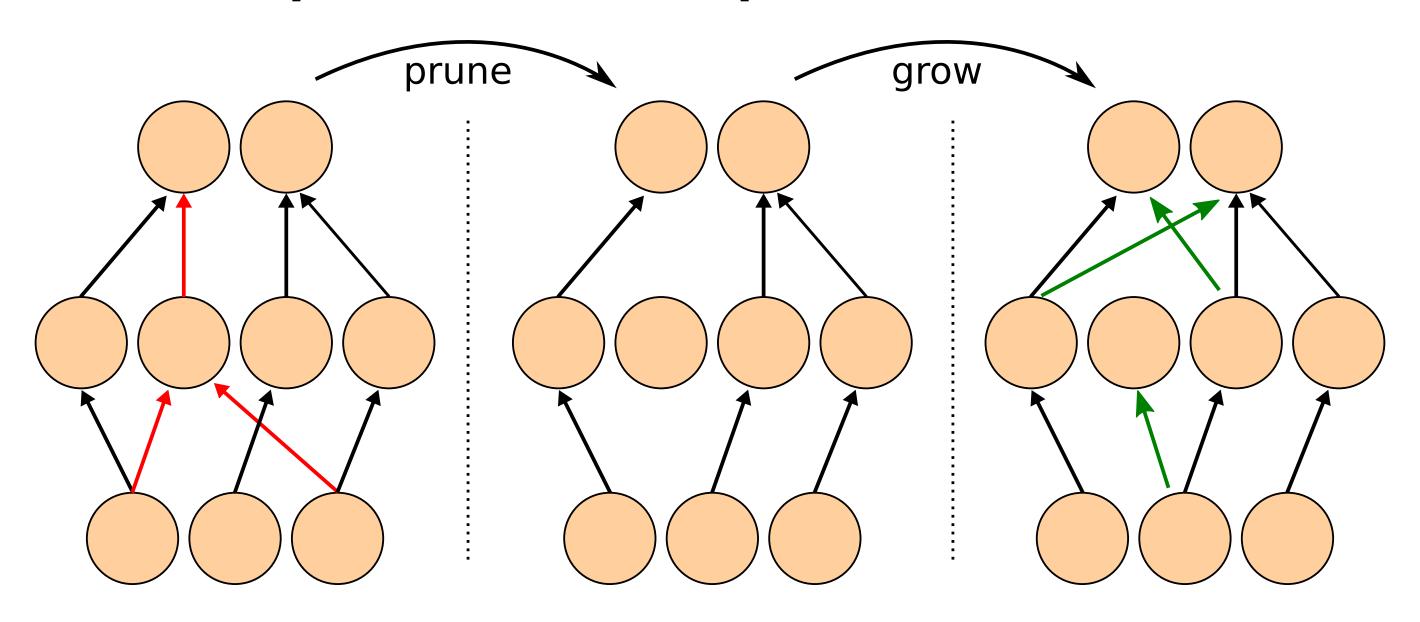
Direct training sparse nets to generalize as well as post-training compression:

is this possible? -YES

Directly trained sparse nets:

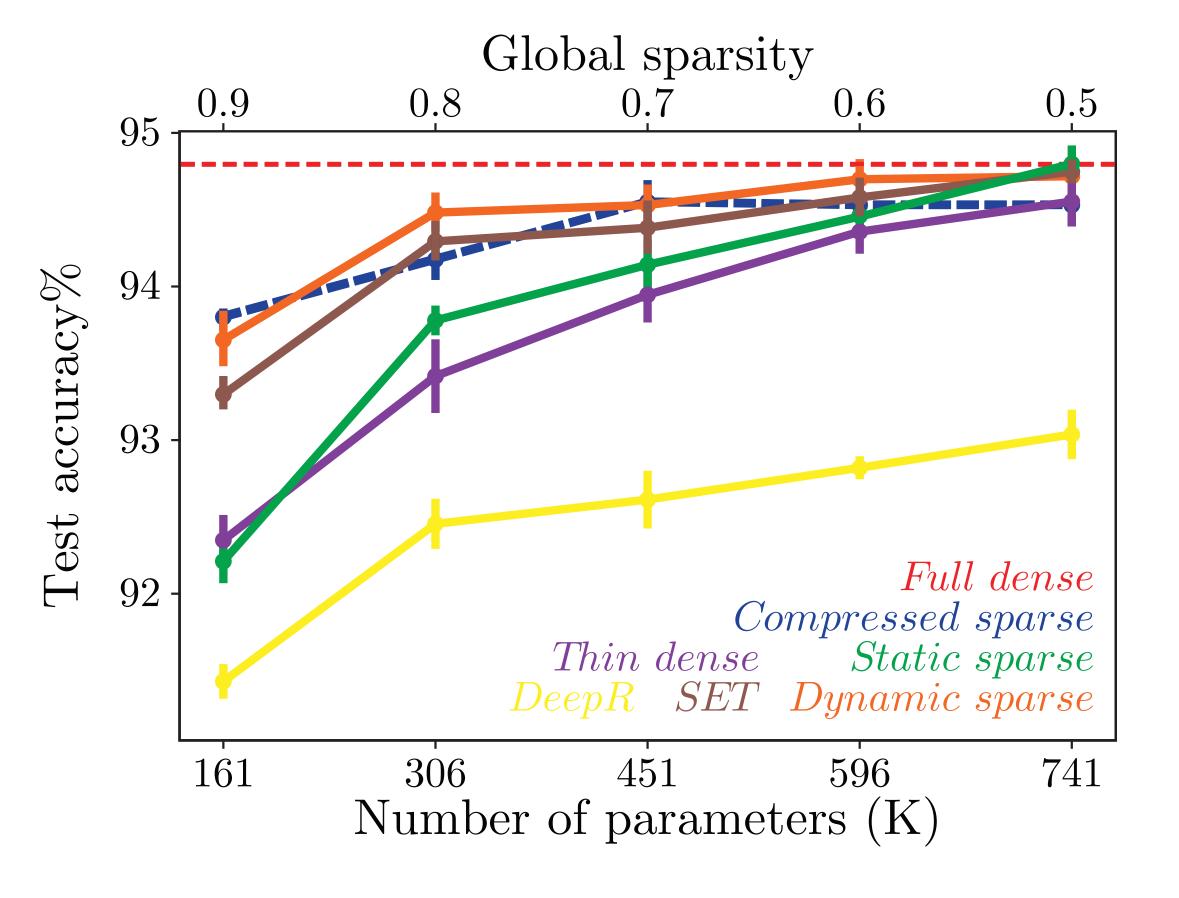
are they "winning lottery tickets"? -NO

Dynamic sparse reparameterization



```
1 for each sparse parameter tensor \mathbf{W}_i do
2 (\mathbf{W}_i, k_i) \leftarrow \text{prune\_by\_threshold}(\mathbf{W}_i, H) \triangleright k_i is the number of pruned weights
3 l_i \leftarrow \text{number\_of\_nonzero\_entries}(\mathbf{W}_i) \triangleright \text{Number of surviving weights after pruning}
4 end for
5 (K, L) \leftarrow (\sum_i k_i, \sum_i l_i) \triangleright \text{Total number of pruned and surviving weights}
6 H \leftarrow \text{adjust\_pruning\_threshold}(H, K, \delta) \triangleright \text{Adjust pruning threshold}
7 for each sparse parameter tensor \mathbf{W}_i do
8 \mathbf{W}_i \leftarrow \text{grow\_back}(\mathbf{W}_i, \frac{l_i}{L}K) \triangleright \text{Grow } \frac{l_i}{L}K zero-initialized weights at random in \mathbf{W}_i
9 end for
```

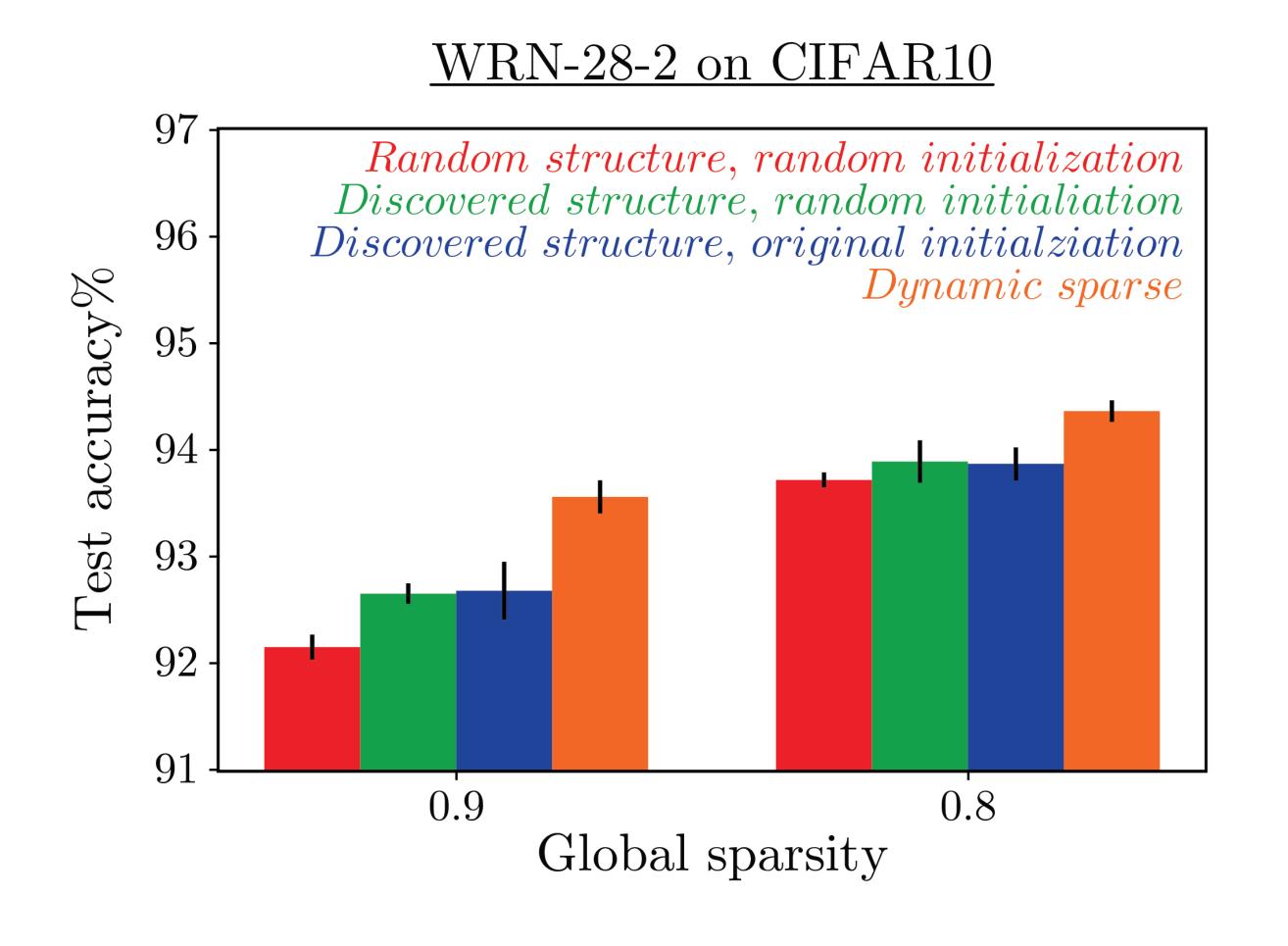
Closed gap between post-training compression and direct training of sparse nets



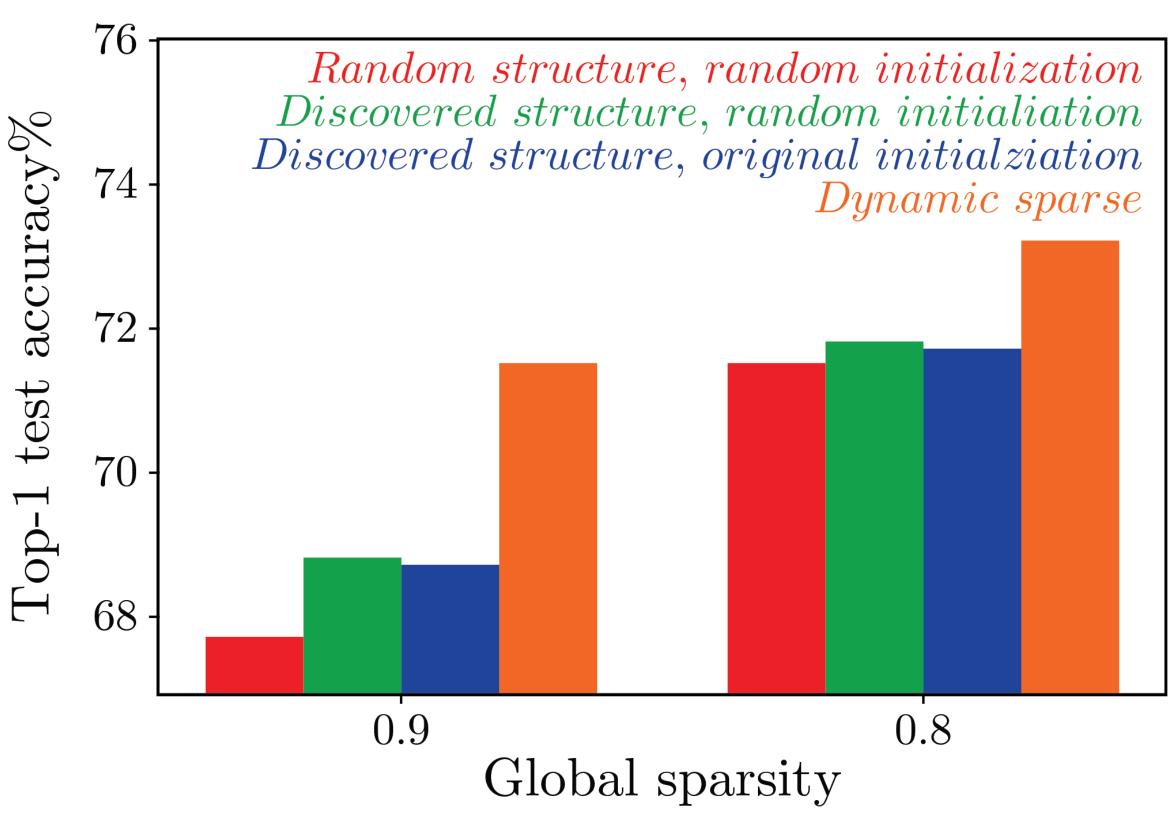
Resnet-50 on Imagenet

Sparsity (# Param)	0.8 (7.3M)		0.9 (5.1M)		0.0 (25.6M)	
$Thin\ dense$	$\begin{array}{ c c }\hline 72.4\\ [-2.5]\end{array}$	90.9 [-1.5]	$ \begin{array}{ c c } \hline 70.7 \\ [-4.2] \end{array} $	89.9 [-2.5]		
$Static\ sparse$	71.6 [-3.3]	90.4 [-2.0]	67.8 [-7.1]	88.4 [-4.0]		
$egin{array}{c} DeepR \ (Bellec \ et \ al., \ 2017) \ SET \end{array}$	71.7 [-3.2]	90.6 [-1.8]	70.2	90.0 [-2.4]	74.9	92.4
(Mocanu et al., 2018) Dynamic sparse	72.6 [-2.3] 73.3	91.2 [-1.2] 92.4	70.4 [-4.5] 71.6	90.1 [-2.3] 90.5	[0.0]	[0.0]
(Ours)	[-1.6]	[0.0]	[-3.3]	[-1.9]		
Compressed sparse (Zhu & Gupta, 2017)	$\begin{array}{ c c }\hline 73.2\\ [-1.7]\end{array}$	91.5 [-0.9]	$ \begin{array}{ c c } \hline 70.3 \\ [-4.6] \end{array} $	90.0 [-2.4]		

Directly trained sparse nets are not "winning tickets": exploration of structural degrees of freedom is crucial



Resnet-50 on Imagenet



Visit our poster:

Wednesday, Pacific Ballroom #248

PARAMETER EFFICIENT TRAINING OF DEEP CONVOLUTIONAL NEURAL NETWORKS BY DYNAMIC SPARSE REPARAMETERIZATION Hesham Mostafa¹, Xin Wang¹,².

1. Artificial Intelligence Products Group, Intel Corporation; 2. Cerebras Systems.

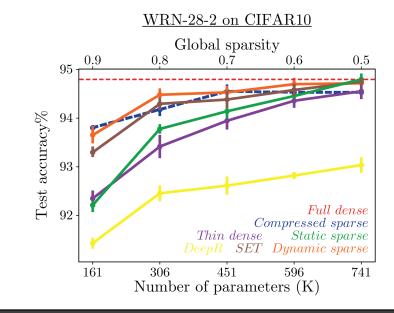
Overview

- It has long been thought that **direct training of a small, sparse deep convolution netwrork** *de novo* is much more difficult than post-training compression of a large, dense model.
- Here we challenged this belief by presenting a **dynamic sparse reparameterization** technique that closed the performance gap between iterative pruning of a dense model and direct training of a sparse one.
- We further showed that "lottery tickets" (Frankle & Carbin, 2018) do not always exist, and training-time structural exploration is crucial to learning by sparse networks, so much so that adding structural degrees of freedom is often more effective than adding extra free parameters.

Training-time structural exploration by dynamic sparse reparameterization

• Our method is based on a simple **dynamic parameter reallocation** procedure, performed once every hundreds of batch iterations during training, yielding best accuracies at a given sparsity.

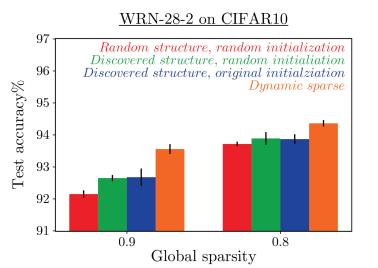
• We benchmarked our *dynamic sparse* training against *full dense* (original overparameterized model), *compressed sparse* (post-training iterative pruning), *thin dense* (small dense model with matching parameter count), *static sparse* (sparse model with fixedstructure), *DeepR* and *SET* (previous dynamic sparse methods).

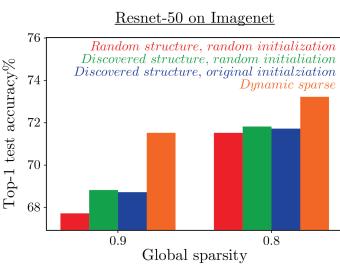


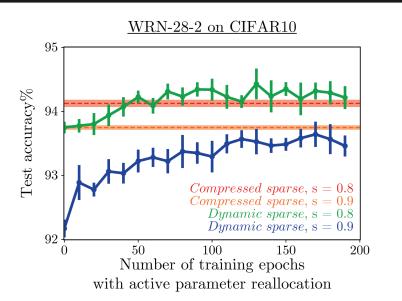
Resnet-50 on Imagenet

Sparsity (# Param)	0.8 (7.3M)		0.9 (5.1M)		0.0 (25.6M)	
Thin dense	72.4 [-2.5] 71.6	90.9 [-1.5] 90.4	70.7 [-4.2] 67.8	89.9 [-2.5] 88.4		
$\frac{Static\ sparse}{DeepR}$	[-3.3]	[-2.0]	[-7.1]	[-4.0]		
(Bellec et al., 2017)	[-3.2]	[-1.8]	[-4.7]	[-2.4]	74.9	92.4
SET (Mocanu et al., 2018)	72.6 [-2.3]	91.2 [-1.2]	70.4 [-4.5]	90.1 [-2.3]	[0.0]	[0.0]
Dynamic sparse (Ours)	73.3 [-1.6]	$egin{array}{c} {\bf 92.4} \\ {f [\ 0.0]} \end{array}$	71.6 [-3.3]	$\begin{bmatrix} 90.5 \\ [-1.9] \end{bmatrix}$		
Compressed sparse (Zhu & Gupta, 2017)	73.2	91.5 [-0.9]	70.3	90.0 [-2.4]		

Importance of training-time structural exploration and non-existence of "lottery tickets"







- Furthermore, we investigated whether the sparse network structures our method discovered were "winning lottery tickets" (Frankle & Carbin, 2018).
- We found that **neither the connectivity nor the weight initialization** could explain the superior generalization.
- Instead, **simultaneous structural exploration and parameter optimization** is indispensable for reaching the best generalization performance.
- Finally, we found that **network structure converges faster than the network parameters**, suggesting that parameter reallocation need not be active during the entire course of training.

Implications

- We showed that compact, sparse deep convolutional networks can be effectively trained directly under a strict, low memory footprint.
- We showed that sparse networks generalize better, i.e. in order to achieve the best accuracy under a strict memory budget, it is necessary to use part of the budget to describe connectivity, rather than spending it all on dense weights.

Frankle and Carbin. The lottery ticket hypothesis: finding sparse, trainable neural networks. arXiv:1803.03635 (2018)

Bellec, Kappel, Maass and Legenstein. Deep rewiring: Training very sparse deep networks. arXiv:1711.05136 (2017)

Mocanu, Mocanu, Stone, Nguyen, Gibescu and Liotta. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science. Nature communications (2018) 9:2383.

Zhu and Gupta. To prune, or not to prune: exploring the efficacy of pruning for model compression. arXiv:1710.01878 (2017)

