
Direct Uncertainty Prediction for Medical Second Opinions

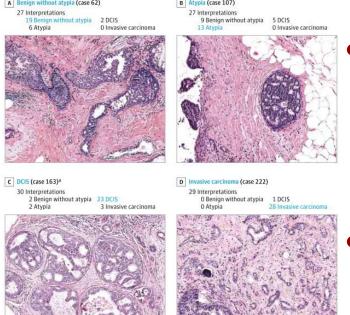
Maithra Raghu, Katy Blumer, Rory Sayres, Ziad Obermeyer, Sendhil Mullainathan, Jon Kleinberg

Poster #246

Human Expert Disagreements

Human Expert Disagreements

Diagnostic Concordance Amongst Pathologists Interpreting Breast Biopsy Specimens, UW School of Medicine, JAMA,

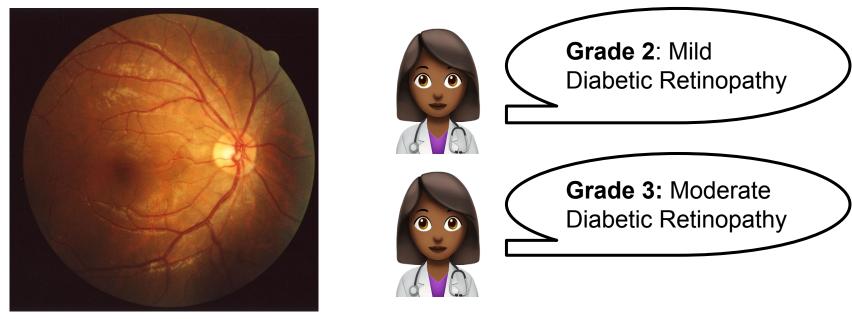

B Atypia (case 107) 2015 27 Interpretations 27 Interpretations 19 Benign without atypia 2 DCIS 9 Benign without atypia 5 DCIS O Invasive carcinoma O Invasive carcinoma c DCIS (case 163)a D Invasive carcinoma (case 222) 29 Interpretations 2 Benign without atypia 23 DCIS O Benign without atypia 1 DCIS 3 Invasive carcinoma

Medical Second Opinions

Poster #246:

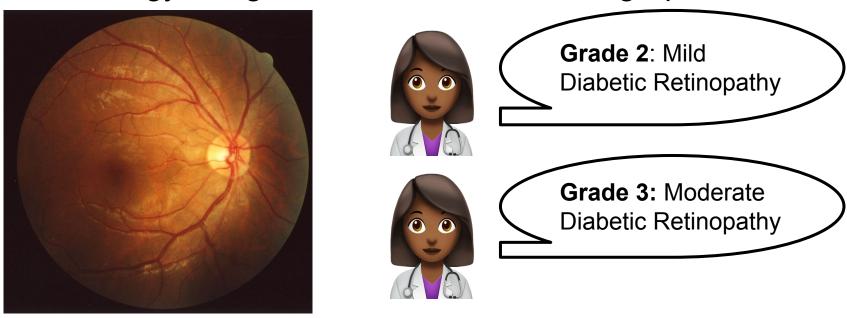
Diagnostic Concordance Amongst Pathologists Interpreting Breast Biopsy Specimens, UW School of Medicine, JAMA,

2015

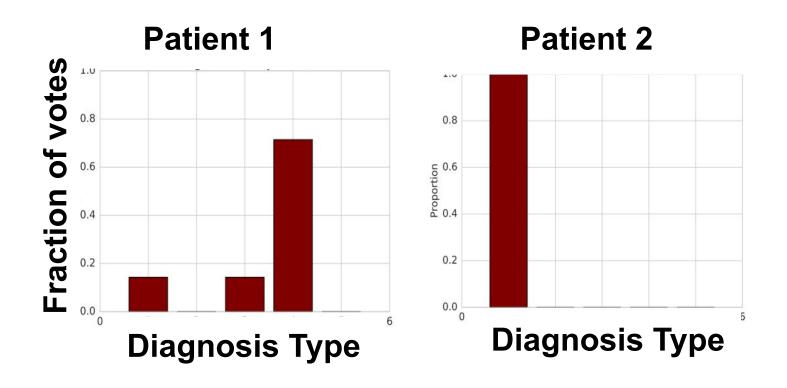

 Agreement between individual pathologist grade and a panel consensus score on ~240 breast biopsies, 6900 individual case diagnoses

 25% disagreement between pathologists and consensus

Medical Second Opinions


Poster #246:

Ophthalmology: Diagnosis from Fundus Photographs


The Source of Disagreements

Ophthalmology: Diagnosis from Fundus Photographs

Random Mistakes?

The Source of Disagreements

ML for Doctor Disagreement Prediction

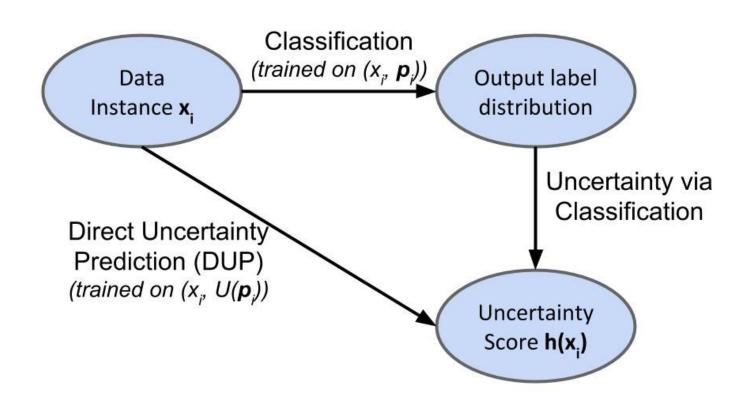
Given input (image) x, predict the amount of disagreement. Flag patients for *medical second opinions*.

ML for Doctor Disagreement Prediction

Given input (image) x, predict the amount of disagreement. Flag patients for *medical second opinions*.

Training data: x_i , with multiple labels $y_1^{(i)}, \dots, y_k^{(i)}$ (different doctors) I.e. (x_i, \mathbf{p}_i) , \mathbf{p}_i grade distribution, target $U(\mathbf{p}_i)$ (e.g. U() entropy)

ML for Doctor Disagreement Prediction

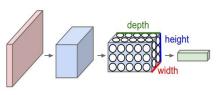

Given input (image) x, predict the amount of disagreement. Flag patients for *medical second opinions*.

Training data: x_i , with multiple labels $y_1^{(i)}, \dots, y_k^{(i)}$ (different doctors) l.e. (x_i, \mathbf{p}_i) , \mathbf{p}_i grade distribution, target $U(\mathbf{p}_i)$ (e.g. U() entropy)

- 1) Uncertainty Via Classification (UVC): (i) train *classifier* on empirical distribution of labels (x_i, p_i) (ii) postprocess with U()
- 2) Direct Uncertainty Prediction (DUP): directly predict scalar

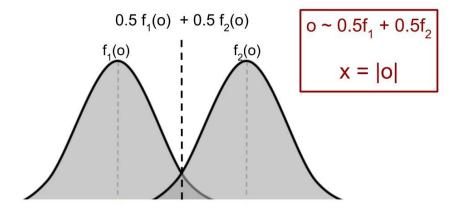
Poster uncertainty score (* YreU(Pg)) for Medical Second Opinions

Direct Uncertainty Prediction


Direct Uncertainty Prediction

Hidden information:

61 (age) F (gender) medical history


Direct Uncertainty Prediction

$$h_{dup}(x) = \int U(\mathbb{E}[\mathbf{Y}|O=o]) f_O(o|g(O)=x)$$
$$h_{uvc}(x) = U\left(\int \mathbb{E}[\mathbf{Y}|O=o] f_O(o|g(O)=x)\right)$$

Theorem: DUP gives an unbiased estimate of true uncertainty

Empirical Results: Synthetic Examples

Mixture of Gaussians

SVHN and CIFAR-10: Image Blurring Application

Large Scale Medical Application

Diabetic Retinopathy (DR)

5 class scale:

- 1 None
- 2 Mild

Referable

- 3 Moderate
- 4 Severe
- **5 Proliferative**

Large Scale Medical Application

Task		Model Type	Performance (AUC)
Variance Prediction	UVC	Histogram-E2E	70.6%
Variance Prediction	UVC	Histogram-PC	70.6%
Variance Prediction	DUP	Variance-E2E	72.9%
Variance Prediction	DUP	Variance-P	74.4%
Variance Prediction	DUP	Variance-PR	74.6%
Variance Prediction	DUP	Variance-PRC	74.8%
Disagreement Prediction	UVC	Histogram-E2E	73.4%
Disagreement Prediction	UVC	Histogram-PC	76.6%
Disagreement Prediction	DUP	Disagree-P	78.1 %
Disagreement Prediction	DUP	Disagree-PC	78.1%
Variance Prediction	DUP	Disagree-PC	73.3%
Disagreement Prediction	DUP	Variance-PRC	77.3%

Large Scale Medical Application

Poster #246

Small Gold Standard Evaluation Set

Individual Grades by Specialists

Single, Consensus, Adjudicated Grade

	Model Type	Majority	Median	$\mathbf{Majority} = 1$	$\mathbf{Median} = 1$	Referable
UVC	Histogram-E2E-Var	78.1%	78.2%	81.3%	78.1%	85.5%
UVC	Histogram-E2E-Disagree	78.5%	78.5%	80.5%	77.0%	84.2%
UVC	Histogram-PC-Var	77.9%	78.0%	80.2%	77.7%	85.0%
UVC	Histogram-PC-Disagree	79.0%	78.9%	80.8%	79.2%	84.8%
DUP	Variance-PR	80.0%	79.9%	83.1%	80.5%	85.9%
DUP	Variance-PRC	79.8%	79.7%	82.7%	80.2%	85.9%
DUP	Disagree-P	81.0%	80.8%	84.6%	81.9%	86.2%
DUP	Disagree-PC	80.9%	80.9%	84.5%	81.8%	86.2%