

Cognitive Model Priors for Predicting Human Decisions

David Bourgin*¹ Joshua Peterson*² Daniel Reichman² Stuart Russell¹ Thomas Griffiths²

¹University of California, Berkeley, ²Princeton University

ICML 2019

Predicting human behavior is important for...

Economics

Psychology

Al-human Alignment

Two Approaches

Two Approaches

Behavioral Science

Step 1

Observe behavior

Step 2

Create theory / model

$$\sum_{j=1}^{N} p_j u(r_j)$$

$$\sum_{j=1}^{N} p_j u(r_j)$$
$$\sum_{j=1}^{N} \pi(p_j) v(r_j)$$

Two Approaches

Behavioral Science

Step 1

Observe behavior

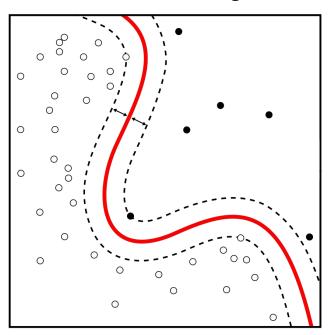
Step 2

Create theory / model

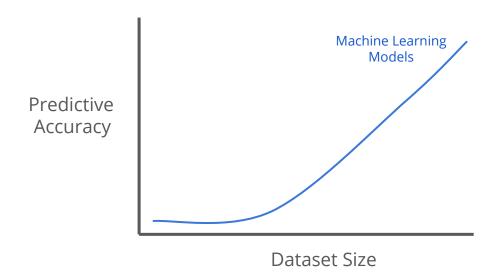
$$\sum_{j=1}^{N} p_j u(r_j)$$

$$\sum_{j=1}^{N} p_j u(r_j)$$
$$\sum_{j=1}^{N} \pi(p_j) v(r_j)$$

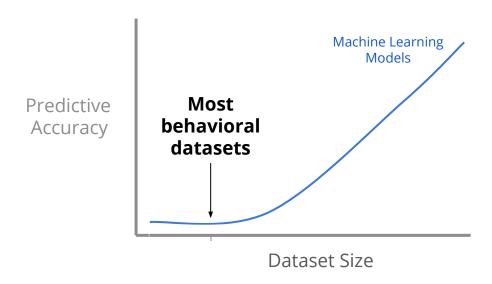
Machine Learning



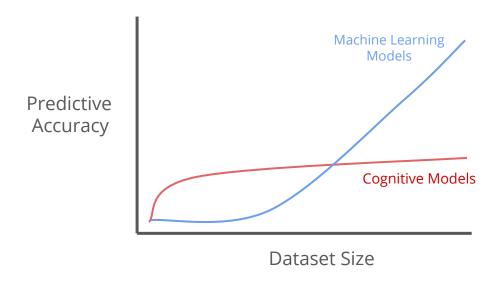
ML can be very effective, but needs lots of data



ML can be very effective, but needs lots of data



ML can be very effective, but needs lots of data



Cognitive models need less data, but improve slower

1. Use a cognitive model to generate synthetic behavioral data

- 1. Use a cognitive model to generate synthetic behavioral data
- 2. **Pretrain** a neural network on this synthetic behavior

- 1. Use a cognitive model to generate synthetic behavioral data
- 2. **Pretrain** a neural network on this synthetic behavior

3. **Fine-tune** the pretrained network on real human behavior

Case Study: Risky Choice

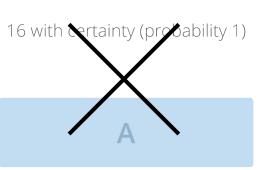
- Choices that involve uncertainty & monetary gain/loss
- Multiple models developed over decades

Task is to **choose between two gambles**

АВ

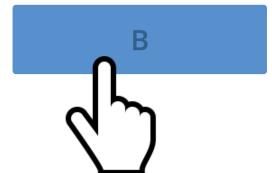
A **gamble** is a collection of outcomes (*rewards*) & their probabilities

1 with probability 0.6
44 with probability 0.1
48 with probability 0.1
50 with probability 0.2



1 with probability 0.6 44 with probability 0.1 48 with probability 0.1 50 with probability 0.2

One of these is then sampled



16 with certainty (probability 1)

1 with probability 0.6 44 with probability 0.1 48 with probability 0.1 50 with probability 0.2

A

B

Feedback: You chose B and gained 50
Had you chosen A, you would have gained 16

(between gambles)

(between gambles)

Approach

- 1. Specify the **subjective value** of a gamble
- 2. Choose gamble with highest value

(between gambles)

Approach

- 1. Specify the **subjective value** of a gamble
- 2. Choose gamble with highest value

Lots of models we could use...

$$\sum_{j=1}^{N} p_j r_j$$

$$\sum_{j=1}^{N} p_j u(r_j)$$

$$\sum_{j=1}^{N} \pi(p_j) v(r_j)$$

• • •

(between gambles)

Approach

- 1. Specify the **subjective value** of a gamble
- 2. Choose gamble with highest value

Lots of models we could use...

$$\sum_{j=1}^{N} p_j r_j$$

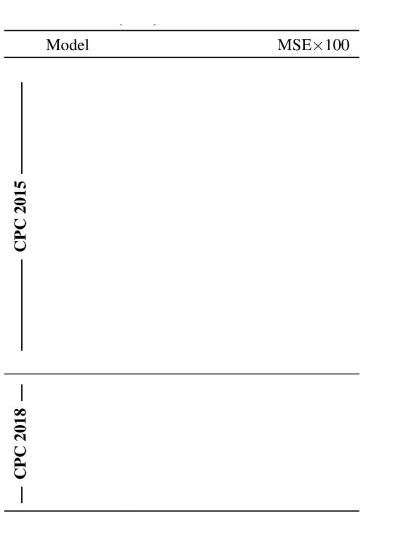
$$\sum_{j=1}^{N} p_j u(r_j)$$

$$\sum_{j=1}^{N} \pi(p_j) v(r_j)$$

We used SOTA: "BEAST"

- Estimates expected value (payoff) with biased, sampled-based, estimators
- We treat as black box with inputs/outputs

Erev et al.. *Psychol. Rev.*, 2017, *124*, 369. Plonsky et al. 2019, arXiv preprint arXiv:1904.06866.



CPC15 and CPC18

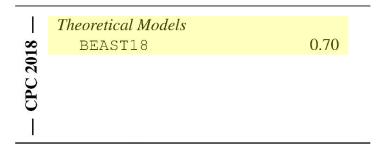
competition datasets are still **small** by ML standards

	1N 2	
	Model	MSE×100
	ML + Raw Data MLP k-Nearest Neighbors Kernel SVM Random Forest	7.39 7.15 5.52 6.13
- CPC 2015 -		
- CPC 2018 —		

Machine learning struggles when learning from raw inputs and **scarce data**

	Model	MSE×100
	ML + Raw Data	
	MLP	7.39
	k-Nearest Neighbors	7.15
	Kernel SVM	5.52
	Random Forest	6.13
	Theoretical Models	
j	BEAST15	0.99
1	CPC 2015 Winner	0.88
CFC 2015		
- 		

Hand-built **cognitive models** do much better



	Model	MSE×100	
——————————————————————————————————————	ML + Raw Data MLP k-Nearest Neighbors Kernel SVM Random Forest Theoretical Models BEAST15 CPC 2015 Winner ML + Feature Engineering MLP k-Nearest Neighbors Kernel SVM Random Forest Ensemble	7.39 7.15 5.52 6.13 0.99 0.88 1.81 1.62 1.01 0.87 0.70	Machine learning with lots of feature-engineering finally shows improvements
1	Theoretical Models		2015 winner
— CPC 2018 -	BEAST18 ML + Feature Engineering Random Forest CPC 2018 Winner	0.70 0.68 0.57	Our 2018 winning entry

	Model	MSE×100	
	ML + Raw Data		
	MLP	7.39	
	k-Nearest Neighbors	7.15	
	Kernel SVM	5.52	
	Random Forest	6.13	
	Theoretical Models		
015	BEAST15	0.99	
— CPC 2015	CPC 2015 Winner	0.88	
	ML + Feature Engineering		Our method
	MLP	1.81	
	k-Nearest Neighbors	1.62	outperforms them all
	Kernel SVM	1.01	
	Random Forest	0.87	
	Ensemble	0.70	
ļ	MLP + Cognitive Prior (ours)	0.53	
1	Theoretical Models		
∞	BEAST18	0.70	
20]	ML + Feature Engineering		
CPC 2018	Random Forest	0.68	
CE	CPC 2018 Winner	0.57	Better than our CPC18 winn
1	MLP + Cognitive Prior (ours)	0.48	

Result: choices13k dataset

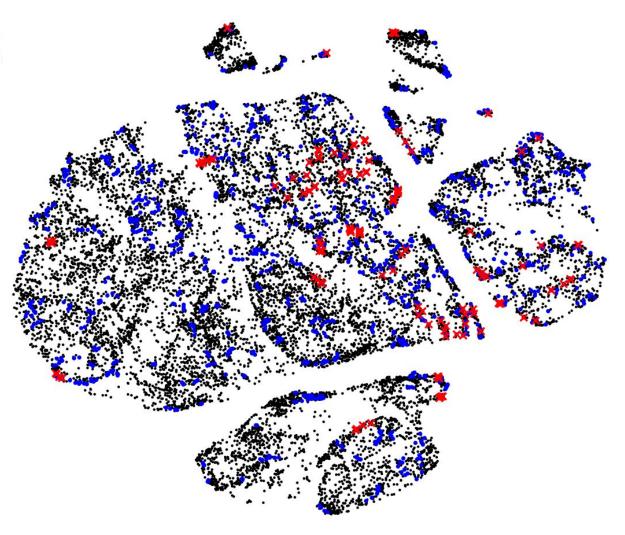
- 13,000 pairs of gambles
- 240k individual decisions

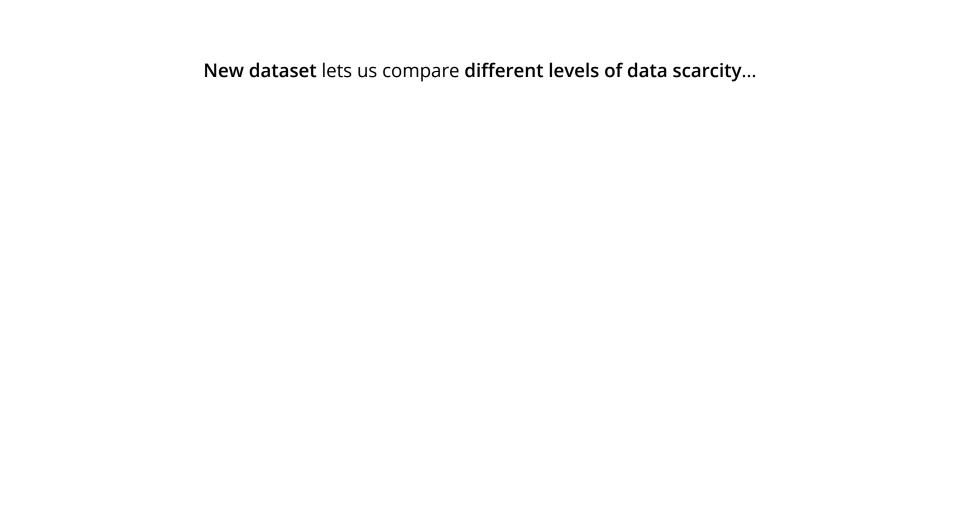
Result: choices13k dataset

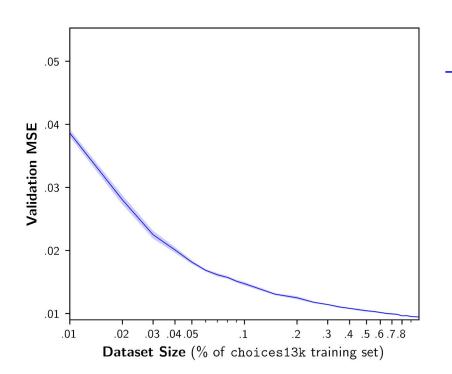
• 13,000 pairs of gambles

• 240k individual decisions

- Previous Benchmark (CPC)
- Ours: choices13k

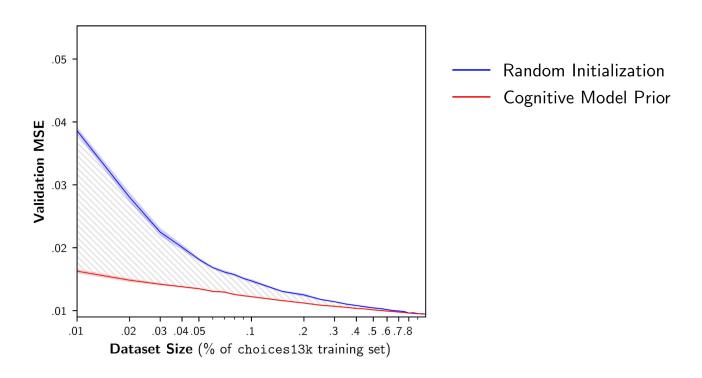




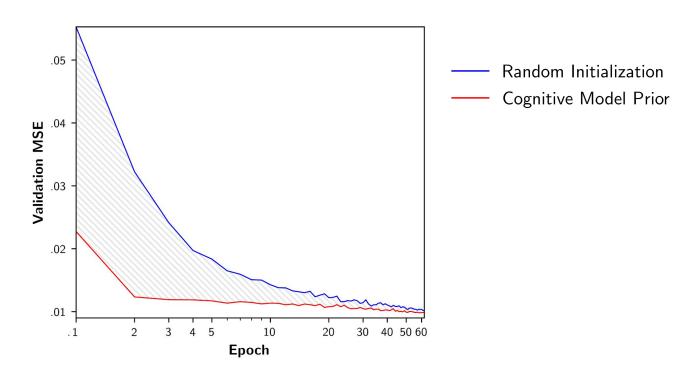


Random Initialization

When data is scarce, cognitive model priors improve generalization



When data is scarce, cognitive priors reduce training time



Predicting human behavior is important for...

Economics

Psychology

Al-Human Alignment

Cognitive model priors improve accuracy and reduce training time

Cognitive Model Priors for Predicting Human Decisions

David Bourgin* Joshua Peterson* Daniel Reichman Stuart Russell Thomas Griffiths

Co-authors

Joshua Peterson

Daniel Reichman

Stuart Russell

Thomas Griffiths

Funding

DARPA

Future of Life Institute

Open Philanthropy Project

National Science Foundation

Poster #244
Wednesday Evening

ddbourgin@gmail.com
peterson.c.joshua@gmail.com

