A Multitask Multiple Kernel Learning Algorithm for Survival Analysis with Application to Cancer Biology

Onur Dereli, Ceyda Oğuz, Mehmet Gönen

Koç University, İstanbul, Turkey
odereli14@ku.edu.tr coguz@ku.edu.tr mehmetgonen@ku.edu.tr

$$
\text { June 12, } 2019 \text { / Long Beach }
$$

Proposed Approach

Multitask

Proposed Approach

Proposed Approach

Proposed Approach

Multitask

Multitask Survival MKL Formulation

$\operatorname{minimize} \sum_{t=1}^{T}\left[\frac{1}{2} \boldsymbol{w}_{t}^{\top} \boldsymbol{w}_{t}+C \sum_{i=1}^{N_{t}}\left(\xi_{t i}^{+}+\left(1-\delta_{t i}\right) \xi_{t i}^{-}\right)\right]$
with respect to $\boldsymbol{w}_{t} \in \mathbb{R}^{D_{t}}, \quad \boldsymbol{\xi}_{t}^{+} \in \mathbb{R}^{N_{t}}, \quad \boldsymbol{\xi}_{t}^{-} \in \mathbb{R}^{N_{t}}, \quad b_{t} \in \mathbb{R}$

$$
\begin{array}{lll}
\text { subject to } & \epsilon+\xi_{t i}^{+} \geq y_{t i}-\boldsymbol{w}_{t}^{\top} \boldsymbol{x}_{t i}-b_{t} & \forall(t, i) \\
& \epsilon+\xi_{t i}^{-} \geq \boldsymbol{w}_{t}^{\top} \boldsymbol{x}_{t i}+b_{t}-y_{t i} \quad \forall(t, i) \\
& \xi_{t i}^{+} \geq 0 \quad \forall(t, i) \\
& \xi_{t i}^{-} \geq 0 \quad \forall(t, i) &
\end{array}
$$

Multitask Survival MKL Formulation

$$
\begin{aligned}
\text { minimize } & -\sum_{t=1}^{T} \sum_{i=1}^{N_{t}} y_{t i}\left(\alpha_{t i}^{+}-\alpha_{t i}^{-}\right)+\epsilon \sum_{t=1}^{T} \sum_{i=1}^{N_{t}}\left(\alpha_{t i}^{+}+\alpha_{t i}^{-}\right) \\
& +\frac{1}{2} \sum_{t=1}^{T} \sum_{i=1}^{N_{t}} \sum_{j=1}^{N_{t}}\left(\alpha_{t i}^{+}-\alpha_{t i}^{-}\right)\left(\alpha_{t j}^{+}-\alpha_{t j}^{-}\right) \sum_{m=1}^{P} \eta_{m} k_{m}\left(\boldsymbol{x}_{t i}, \boldsymbol{x}_{t j}\right)
\end{aligned}
$$

with respect to $\boldsymbol{\alpha}_{t}^{+} \in \mathbb{R}^{N_{t}}, \quad \boldsymbol{\alpha}_{t}^{-} \in \mathbb{R}^{N_{t}}, \quad \boldsymbol{\eta} \in \mathbb{R}^{P}$

$$
\begin{aligned}
\text { subject to } & \sum_{i=1}^{N_{t}}\left(\alpha_{t i}^{+}-\alpha_{t i}^{-}\right)=0 \quad \forall t \\
& C \geq \alpha_{t i}^{+} \geq 0 \quad \forall(t, i) \\
& C\left(1-\delta_{t i}\right) \geq \alpha_{t i}^{-} \geq 0 \quad \forall(t, i) \\
& \sum_{m=1}^{P} \eta_{m}=1 \\
& \eta_{m} \geq 0 \quad \forall m
\end{aligned}
$$

Multitask Survival MKL Formulation

$$
\eta_{m}^{(s+1)}=\frac{\sum_{t=1}^{T} \eta_{m}^{(s)} \sqrt{\sum_{i=1}^{N_{t}} \sum_{j=1}^{N_{t}} \alpha_{t i}^{(s)} \alpha_{t j}^{(s)} k_{m}\left(\boldsymbol{x}_{t i}, \boldsymbol{x}_{t j}\right)}}{\sum_{t=1}^{T} \sum_{o=1}^{P} \eta_{o}^{(s)} \sqrt{\sum_{i=1}^{N_{t}} \sum_{j=1}^{N_{t}} \alpha_{t i}^{(s)} \alpha_{t j}^{(s)} k_{o}\left(\boldsymbol{x}_{t i}, \boldsymbol{x}_{t j}\right)}} \forall m
$$

Data Sets

- 20 cancer data sets from TCGA database Gene expression profiles and survival characteristics
- Hallmark Gene Set [1] \& PID Pathway [2] Collections

Hallmark Gene Sets

Summary

- A multitask multiple kernel learning algorithm
- Integration of different data sets
- Performing survival prediction and knowledge extraction conjointly
- Understanding the underlying mechanisms of cancer

References

[1] A. Liberzon, C. Birger, H. Thorvaldsdottir, M. Ghandi, J. P. Mesirov, and P. Tamayo. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst., 1:417-425, 2015.
[2] C. F. Schaefer, K. Anthony, S. Krupa, J. Buchoff, M. Day, et al. PID: The Pathway Interaction Database. Nucleic Acids Res., 37:D674-D679, 2009.

Thank you

You can reach R implementations of our work at https://github.com/mehmetgonen/path2msurv.

Please visit our poster if you have any questions.

$$
\begin{aligned}
& \text { Room: Pacific Ballroom \#242 } \\
& \text { Date: Wed Jun 12th 06:30-09:00 PM }
\end{aligned}
$$

This work was supported by the Scientific and Technological Research Council of Turkey (TÜBiTAK) under Grant EEEAG 117E181 and Ph.D. scholarship (2211).

