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• Science is about understanding the laws of nature, which are usually expressed in terms 
of cause and effect relationships.

• Controlled experimentation is the pillar on top of which empirical science is built upon.

• Dozens of billions of dollars are spent every year in performing controlled experiments in 
the context of the empirical sciences (health sciences, economics, social sciences). 

• Inferring and reasoning with causal relations are central for decision-making, 
explainability, and reinforcement learning.
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Motivating Example (1) 
(Why is this problem non-trivial?)

[Greenhouse et al. 2008] In the context of pediatric patients treated with antidepressant:

• The FDA was interested in assessing the effect of antidepressant drugs on suicidality.

• Historically, drugs had been prescribed by doctors taking into account background 
information of the patients and the assessment of their baseline risk.

• Since the prescription and the outcome are both affected by the background factors, a 
controlled experiment is used to identify the unconfounded effect of the 
antidepressants.
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[Greenhouse etal. 2008] On the risk of suicidality among pediatric antidepressant users:

• The FDA performed several RCTs finding that youths receiving antidepressants (do(x1)) had 
approximately twice the amount of suicidal thoughts and behaviors compared to the control 
groups (do(x0)).

• Results led to the addition of a strict warning to the drug’s label.

• Surprisingly, following the warning, a decrease in prescription was reported together with an 
increase of suicidal events in the corresponding age groups.

• Several observational studies reported positive results for patients using the same 
antidepressants, even after accounting for access to mental health-care and other 
confounding factors.

Randomization is not all there is! 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!
What is going on here?

P*(Y = 1 |do(x1)) < P*(Y = 1 |do(x0))

P(Y = 1 |do(x1)) > P(Y = 1 |do(x0))
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What are we missing?  
Motivating Example (3)

• Were the experiments conducted erroneously ?

• Randomization guarantees internal validity, that is, causal conclusions are true for the 
population that was studied.

• Most experimental findings are intended to be generalized to a broader, or even 
different, target domain (in other words, population, setting, environment).
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• Questions: 
1. How to determine if st-adjustment holds for a set of covariates Z?
2. How to find admissible covariate sets?
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• Let’s call this set Zp. 

• For example if adjusting for Z = {Z1, Z2, Z3} in this model 
Zp = {Z3}.
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outcome Y if:

(i) Variables in Zp are independent of the treatment given all other covariates, and

(ii) The outcome Y is independent of all the transportability (T) and selection bias nodes 
(S) given the covariates Z and the treatment X.

Thm. The causal effect P*(y | do(x)) is identifiable by st-adjustment on a set Z with D if and 
only if the conditions above hold for Z relative to X and Y.
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P*(y |do(x)) = ∑
z1,z2,z3

P(y |do(x), z1, z2, z3, S = 1)P*(z1, z2, z3)

Hence, the st-adjustment is guaranteed to hold, i.e.:

measurements from  
the target domain

experimental data from the  
source under selection bias

causal effect  
in target domain
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Challenge II.  
Searching for Admissible Sets

• Given a candidate set Z, we have a condition to determine if it is admissible or not.

• The natural question that follows is how to find an admissible set without resorting to 
trial and error. There could be exponentially many candidates (and even valid ones!).

• How to determine the existence of at least one admissible set?

• There are sets that could be preferred among other admissible ones due to certain 
properties (e.g., cost, variance).
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Selection Diagram D
What are all the admissible sets 

satisfying st-adjustment?P(v |do(x), S = 1)

Selection-biased Exp. 
Distribution from 𝛑

Set W of covariates  
measurable in 𝛑* 

List of of sets 
 

such that for  
each Zi:

Z1, Z2, … ⊆ W

P*(y |do(x)) = ∑
zi

P(y |do(x), zi, S = 1)P*(zi)

We provide an algorithm (Alg. 2) that works with polynomial delay (Thm. 6)
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Conclusions
• Given a selection diagram, we describe complete conditions to determine whether 

adjusting by a given set of covariates is admissible for the identification of causal effects 
from experimental results in a source domain and some observations from the target 
domain.

• We provide a procedure to list valid adjustment sets given a set of variables that can be 
measured.

• We hope the formal and transparent dressing given to the problem by our results can 
help researchers in health sciences, econometrics, reinforcement learning, marketing 
and others where extrapolating experimental results is crucial.
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Thank you!
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Polynomial delay
• Time passing between the start of the execution and first output or failure is polynomial.


• Time between outputs is also polynomial.
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