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  Introduction

Measurement error is common source of bias when using non-
experimental data.

• We focus on underreporting error.
• E.g. survey data of sensitive variables such as drug use.

Goal: Estimate the distribution of outcome Y given exposure A 
and covariates X from non-experimental data.
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Updated goal: Estimate the distribution of outcome Y given 
exposure A and covariates X when exposure observations Ã are 
subject to underreporting errors.

Assumptions:
1. Strict underreporting (A = 0 ⟹ Ã = 0)

2. Ã is independent of X given A
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Outcome model:  pθ(Y |A, X)
Exposure model:  pϕ(A |X)

Error model:  pτ(Ã |A)
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Error model ……… p𝜏(Ã | A)
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max
θ,ϕ,τ ∑

i

log∑
a

pθ(yi |a, xi)pτ(ãi |a)pϕ(a |xi)

Outcome model:  pθ(Y |A, X)
Exposure model:  pϕ(A |X)

Error model:  pτ(Ã |A) Maximize the log marginal likelihood:

Outcome model  … p𝜃(Y | A, X)
Exposure model … p𝜙(A | X)
Error model ……… p𝜏(Ã | A)

  Model
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1. The error distribution is known
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  Identifiability

In particular: 
If X is not independent of A and p(A | X) is a logit, probit, or 
cloglog regression model, then p(Y, Ã | X) is identifiable.
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  Maternal drug use and childhood obesity
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  Drug use and childhood obesity  Thanks!

Come see poster #75


