June 12, 2019 ICML 2019

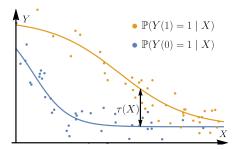
Classifying Treatment Responders Under Causal Effect Monotonicity

Nathan Kallus ORIE and Cornell Tech, Cornell University

Heterogeneous Treatment Effect Estimation

X_{Age}	X_{Weight}	X_{BMI}	X_{SysBP}	T (Anticoagulant)	Y (Hemorrhage)
49	106	31	\sim	Warfarin	1
54	89	26	$\sim\sim$	None	0
43	130	38	\frown	None	1
÷	÷	÷	÷	÷	÷

Fit CATE $\tau(X) = \mathbb{E}[Y(1) - Y(0) \mid X]$ to data on X, T, Y



E.g.: Causal Forest (Wager & Athey '17), TARNet (Shalit et al. '17),

Treatment	Outcome Observed
(T)	(Y)
Give anticoagulant	Hemorrhage?
Personalized discount	Buy?
Target job training	Employed in 6 months?
Homelessness prevention program	Re-enter?
Recidivism prevention program	Recidivate?
Support for minority CS students	Drop out?

.....

Treatment (T)	Individual Label of Interest $(Y(1) - Y(0))$
Give anticoagulant	Hemorrhage iff medicated
Personalized discount	Would buy iff discounted
Target job training	Would get job iff trained
Homelessness prevention program	Re-enter iff not targeted
Recidivism prevention program	Recidivate iff not targeted
Support for minority CS students	Drop out iff not targeted

Classifying Responders: The Problem

- Each unit consists of
 - Features X
 - Potential outcomes $Y(1), Y(0) \in \{0, 1\}$
- "Non-responder" has Y(0) = Y(1)
 - Would've bought (or, not bought) regardless of discount
 - ▶ Would've hemorrhaged (or, not) *regardless* of anticoagulant
- "Responder" has Y(1) = 1 > 0 = Y(0)
 - Would've bought if and only if offered discount

$$\blacktriangleright R = \mathbb{I}\left[Y(1) > Y(0)\right]$$

- Ground truth <u>NOT</u> observed in X, T, Y data
- Want classifier $f : \mathcal{X} \to \{0, 1\}$ with small loss

$$\begin{split} L_{\theta}(f) &= \theta \mathbb{P} \left(\text{false positive} \right) + (1 - \theta) \mathbb{P} \left(\text{false negative} \right) \\ &= \theta \mathbb{P} \left(f(X) = 1, R = 0 \right) \\ &+ (1 - \theta) \mathbb{P} \left(f(X) = 0, R = 1 \right). \end{split}$$

Monotonicity

Monotone treatment response assumption:

$Y(1) \geq Y(0)$

Discount never causes a would-be buyer to not buy

Job training never causes someone to not get employed?

Monotonicity

Monotone treatment response assumption:

 $Y(1) \geq Y(0)$

▶ Discount never causes a would-be buyer to *not* buy
▶ Job training never causes someone to *not* get employed?
▶ Under monotonicity, R = Y(1) - Y(0) ∈ {0, 1}
▶ So,

$$\mathbb{P}(R=1 \mid X) = \tau(X) = \mathbb{E}[Y(1) - Y(0) \mid X]$$

• $f(X) = \mathbb{I}[\tau(X) \ge \theta]$ minimizes $L_{\theta}(f)$

Can take plug-in approach using any CATE estimator $\hat{\tau}$

Question: any value to a direct classification approach?

For simplicity, consider completely randomized data with $\mathbb{P}\left(T=1\right)=0.5$

• Let $Z = \mathbb{I}[Y = T]$ (observable!)

 $\blacktriangleright R = 1 \implies Z = 1$

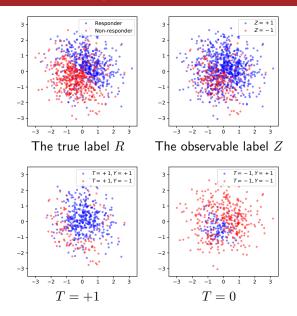
- $\blacktriangleright R = 0 \implies Z \sim \text{Bernoulli}(0.5)$
- \blacktriangleright Z is like a corrupted observation of R

• Seeing Z = 0 is more informative about R

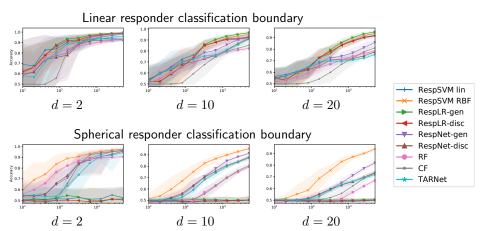
Using Z as a surrogate label for R leads to new direct approaches to the classification problem

Two instantiations of this are RespSVM, RespNet

Empirical Results: Synthetic



Empirical Results: Synthetic



Empirical Results: Census Data

- Predict whether the sex-at-birth of mother's first two kids being the same influences her decision to have a third
 - Follows data construction by Angirst & Evans '96
 - Covariates: ethnicity of mother and father; their ages at marriage, at census, at 1st kid, and at 2nd kid, year of marriage, and education level

Method	$L_{ heta}$ (in 0.01)	% 1st	% 2nd	% 3rd
RespSVM lin	49 ± 2.7	100%		
RespLR-gen	57 ± 2.4		100%	
RespLR-disc	58 ± 2.3			2%
LR	58 ± 2.3			92%
RF	58 ± 2.3			6%

Thank you!

Poster: Today 6:30pm @ Pacific Ballroom #74