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Heterogeneous Treatment Effect Estimation

XAge XWeight XBMI XSysBP T (Anticoagulant) Y (Hemorrhage)

49 106 31 Warfarin 1
54 89 26 None 0
43 130 38 None 1
...

...
...

...
...

...

Fit CATE τ(X) = E[Y (1)− Y (0) | X] to data on X,T, Y

E.g.:
Causal Forest (Wager & Athey ’17),
TARNet (Shalit et al. ’17),
...
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Often Outcome is Binary

Treatment Outcome Observed
(T ) (Y )

Give anticoagulant Hemorrhage?
Personalized discount Buy?
Target job training Employed in 6 months?
Homelessness prevention program Re-enter?
Recidivism prevention program Recidivate?
Support for minority CS students Drop out?
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Often We Want to Predict Response

Treatment Individual Label of Interest
(T ) (Y (1)− Y (0))

Give anticoagulant Hemorrhage iff medicated
Personalized discount Would buy iff discounted
Target job training Would get job iff trained
Homelessness prevention program Re-enter iff not targeted
Recidivism prevention program Recidivate iff not targeted
Support for minority CS students Drop out iff not targeted
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Classifying Responders: The Problem

I Each unit consists of
I Features X
I Potential outcomes Y (1), Y (0) ∈ {0, 1}

I “Non-responder” has Y (0) = Y (1)
I Would’ve bought (or, not bought) regardless of discount
I Would’ve hemorrhaged (or, not) regardless of anticoagulant

I “Responder” has Y (1) = 1 > 0 = Y (0)
I Would’ve bought if and only if offered discount
I R = I [Y (1) > Y (0)]
I Ground truth NOT observed in X,T, Y data

I Want classifier f : X → {0, 1} with small loss

Lθ(f) = θP (false positive) + (1− θ)P (false negative)

= θP (f(X) = 1, R = 0)

+ (1− θ)P (f(X) = 0, R = 1) .
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Monotonicity

I Monotone treatment response assumption:

Y (1) ≥ Y (0)

I Discount never causes a would-be buyer to not buy
I Job training never causes someone to not get employed?

I Under monotonicity, R = Y (1)− Y (0) ∈ {0, 1}
I So,

P (R = 1 | X) = τ(X) = E [Y (1)− Y (0) | X]

I f(X) = I [τ(X) ≥ θ] minimizes Lθ(f)
I Can take plug-in approach using any CATE estimator τ̂
I Question: any value to a direct classification approach?
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Classifying Responders

I For simplicity, consider completely randomized data with
P (T = 1) = 0.5

I Let Z = I [Y = T ] (observable!)
I R = 1 =⇒ Z = 1
I R = 0 =⇒ Z ∼ Bernoulli(0.5)

I Z is like a corrupted observation of R
I Seeing Z = 0 is more informative about R

I Using Z as a surrogate label for R leads to new direct
approaches to the classification problem
I Two instantiations of this are RespSVM, RespNet
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Empirical Results: Synthetic
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Empirical Results: Synthetic

Linear responder classification boundary
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Spherical responder classification boundary
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Empirical Results: Census Data

I Predict whether the sex-at-birth of mother’s first two kids
being the same influences her decision to have a third
I Follows data construction by Angirst & Evans ’96
I Covariates: ethnicity of mother and father; their ages at

marriage, at census, at 1st kid, and at 2nd kid, year of
marriage, and education level

Method Lθ (in 0.01) % 1st % 2nd % 3rd

RespSVM lin 49± 2.7 100%
RespLR-gen 57± 2.4 100%
RespLR-disc 58± 2.3 2%
LR 58± 2.3 92%
RF 58± 2.3 6%
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Thank you!

Poster: Today 6:30pm @ Pacific Ballroom #74
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