Counterfactual Off-Policy Evaluation with Gumbel-Max Structural Causal Models

Michael Oberst MIT

David Sontag MIT

HEALTH SCIENCES & TECHNOLOGY

Motivation: Building trust in RL policies

- Goal: Apply reinforcement learning in high risk settings (e.g., healthcare)
- Problem: How to safely evaluate a policy? No simulator, and off-policy evaluation can fail due to
 - ► Confounding
 - Small sample sizes
 - ► Poorly specified rewards
- Could try to interpret the policy directly, but if not possible, what can we do?

Motivation: Building trust in RL policies

Suppose we are given:

- Markov Decision Process (MDP)
- Policy (e.g., learned using MDP)

Markov Decision Process (MDP)

 $P(S', R \mid S, A)$ S: Current State A: Action R: Reward S': Next State

Observational Data

 $\pi(A \mid S)$

Policy

S: State A: Action

Approach

1

Decomposition of reward

over real episodes, to identify interesting cases

See paper / poster for synthetic case study motivated by sepsis management

Approach

1

Decomposition of reward

over real episodes, to identify interesting cases

See paper / poster for synthetic case study motivated by sepsis management

Counterfactual Outcome

Approach

- 1 Decomposition of reward over real episodes, to identify interesting cases
- 2 Examine counterfactual trajectories under new policy
- 3 Validate and/or criticize conclusions, using full patient information (e.g., chart review)

See paper / poster for synthetic case study motivated by sepsis management

Example

Counterfactual Outcome

Simulating counterfactual trajectories

What we need

1 Observed trajectories

2 Policy to evaluate $\pi(A \mid S)$

3 Model of discrete dynamics, e.g., Markov Decision Process

S: Current State A: Action S': Next State

Simulating counterfactual trajectories

+

What we need

- 1 Observed trajectories
- **2** Policy to evaluate $\pi(A \mid S)$
- 3 Model of discrete dynamics, e.g., Markov Decision Process

S: Current State A: Action S': Next State

Structural Causal Model (SCM)

 $S' = f(S, A, U_{s'})$ $U_{s'} \sim P(U_{s'})$

Simulating counterfactual trajectories

+

What we need

- 1 Observed trajectories
- **2** Policy to evaluate $\pi(A \mid S)$
- 3 Model of discrete dynamics, e.g., Markov Decision Process

S: Current State A: Action S': Next State

Structural Causal Model (SCM)

 $S' = f(S, A, U_{s'})$ $U_{s'} \sim P(U_{s'})$

Problem: Choice of SCM is not identifiable from data!

So, what should we use for the structural causal model (SCM)?

Key challenge: Non-identifiability

There are multiple SCMs consistent with P(S' | S, A) but with different *counterfactual* distributions

For **binary variables**, assuming the property of **monotonicity** (Pearl, 2000) is sufficient to identify the counterfactual distribution

But most real-world MDPs have non-binary states!

So, what should we use for the structural causal model (SCM)?

Key challenge: Non-identifiability

There are multiple SCMs consistent with P(S' | S, A) but with different *counterfactual* distributions

For **binary variables**, assuming the property of **monotonicity** (Pearl, 2000) is sufficient to identify the counterfactual distribution

But most real-world MDPs have non-binary states!

Theorem 1 (informal): (Newly defined) property of **counterfactual stability** generalizes monotonicity to categorical variables

So, what should we use for the structural causal model (SCM)?

Key challenge: Non-identifiability

There are multiple SCMs consistent with P(S' | S, A) but with different *counterfactual* distributions

For **binary variables**, assuming the property of **monotonicity** (Pearl, 2000) is sufficient to identify the counterfactual distribution

But most real-world MDPs have non-binary states!

Theorem 1 (informal): (Newly defined) property of **counterfactual stability** generalizes monotonicity to categorical variables

Gumbel-Max SCM

Use the *Gumbel-Max trick* to sample from a categorical distribution with k categories:

$$g_j \sim Gumbel$$

$$S' = argmax_j \{ \log P(S' = j | S, A) + g_j \}$$

Theorem 2: Gumbel-Max SCM satisfies the counterfactual stability condition

Thank you!

Come to our poster for more details: Pacific Ballroom #72