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Motivation: Building trust in RL policies
►Goal: Apply reinforcement learning in 

high risk settings (e.g., healthcare)

►Problem: How to safely evaluate a 
policy?  No simulator, and off-policy 
evaluation can fail due to

►Confounding

►Small sample sizes

►Poorly specified rewards

►Could try to interpret the policy directly, 
but if not possible, what can we do?
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Observational Data

𝑃 𝑆′, 𝑅 𝑆, 𝐴)

Markov Decision Process (MDP)

Policy

𝜋 𝐴 𝑆)

?

𝑆: Current State
𝐴: Action
𝑅: Reward
𝑆′: Next State

Suppose we are given:
• Markov Decision Process (MDP)
• Policy (e.g., learned using MDP)
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not a fair comparison
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Using counterfactuals to “sanity check”
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Using counterfactuals to “sanity check”
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Idea: If the counterfactual trajectory is unreasonable given 
full context of patient, the model / policy may be flawed
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1 Decomposition of reward 
over real episodes, to 
identify interesting cases

Approach

See paper / poster for synthetic case study 
motivated by sepsis management
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Using counterfactuals to “sanity check”

1 Decomposition of reward 
over real episodes, to 
identify interesting cases

Approach

2 Examine counterfactual 
trajectories under new policy

3 Validate and/or criticize 
conclusions, using full patient 
information (e.g., chart review)

Example

See paper / poster for synthetic case study 
motivated by sepsis management
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Problem: Choice of SCM is not 
identifiable from data!
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𝑆′: Next State



So, what should we use for the structural 
causal model (SCM)?

There are multiple SCMs consistent 
with 𝑃 𝑆′ 𝑆, 𝐴) but with different 
counterfactual distributions

For binary variables, assuming the 
property of monotonicity (Pearl, 
2000) is sufficient to identify the 
counterfactual distribution

But most real-world MDPs have 
non-binary states!

Key challenge: Non-identifiability
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Gumbel-Max SCM
Use the Gumbel-Max trick to sample from a 
categorical distribution with 𝑘 categories:
𝑔𝑗 ∼ 𝐺𝑢𝑚𝑏𝑒𝑙

𝑆′ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗 { log𝑃 𝑆′ = 𝑗 𝑆, 𝐴) + 𝑔𝑗 }

Theorem 2: Gumbel-Max SCM satisfies the 
counterfactual stability condition



Thank you!
Come to our poster for more details: Pacific Ballroom #72


