

MASS: Masked Sequence to Sequence Pre-training for Language Generation

Tao Qin

Joint work with Kaitao Song, Xu Tan, Jianfeng Lu and Tie-Yan Liu Microsoft Research Asia Nanjing University of Science and Technology

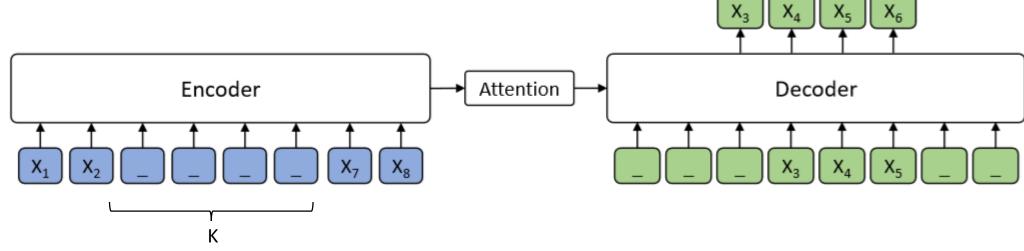
Motivation

- BERT and GPT are very successful
 - BERT pre-trains an encoder for language understanding tasks
 - GPT pre-trains a decoder for language modeling.
- However, BERT and GPT are suboptimal on sequence to sequence based language generation tasks
 - BERT can only be used to pre-train encoder and decoder separately.
 - Encoder-to-decoder attention is very important, which BERT does not pre-train.

Method	BLEU
Without attention	26.71
With attention	36.15

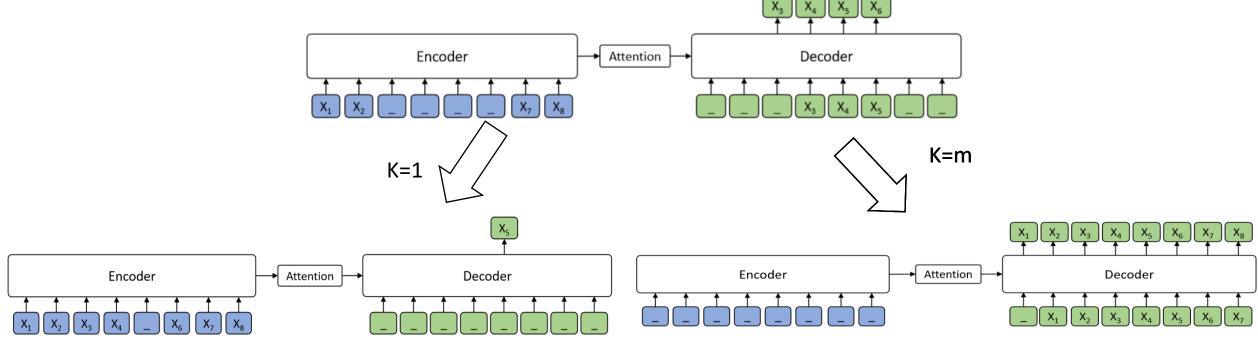
MASS: Pre-train for Sequence to Sequence Generation

MASS is carefully designed to jointly pre-train the encoder and decoder



- Mask k consecutive tokens (segment)
 - Force the decoder to attend on the source representations, i.e., encoder-decoder attention
 - Force the encoder to extract meaningful information from the sentence
 - Develop the decoder with the ability of language modeling

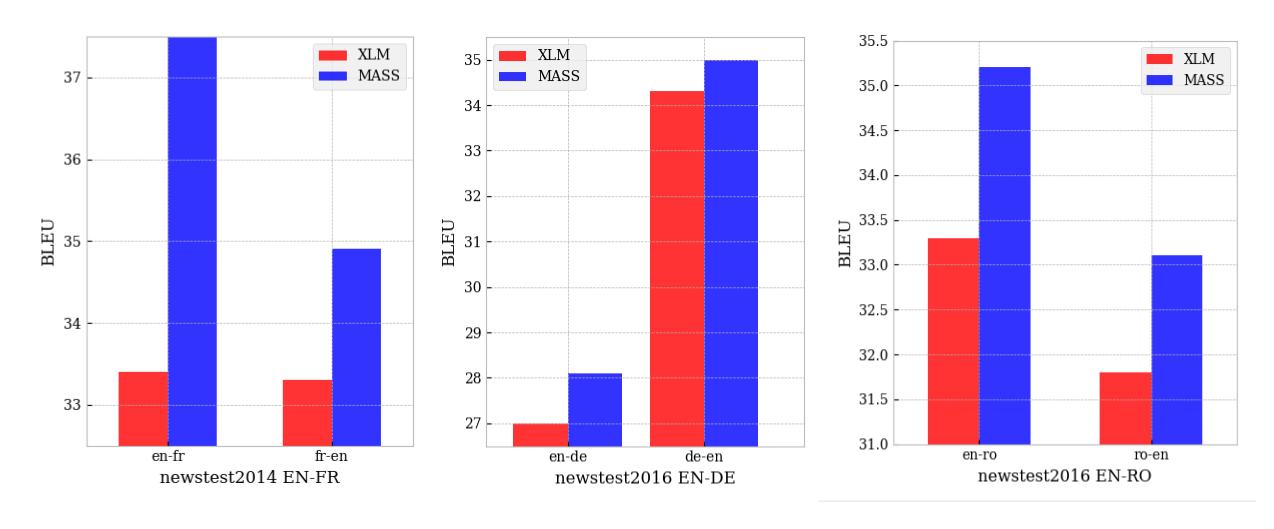
MASS vs. BERT/GPT



Length	Probability	Model
$k = 1$ $k \in [1, m]$	$P(x^{u} x^{\setminus u};\theta) P(x^{u:v} x^{\setminus u:v};\theta)$	masked LM in BERT MASS

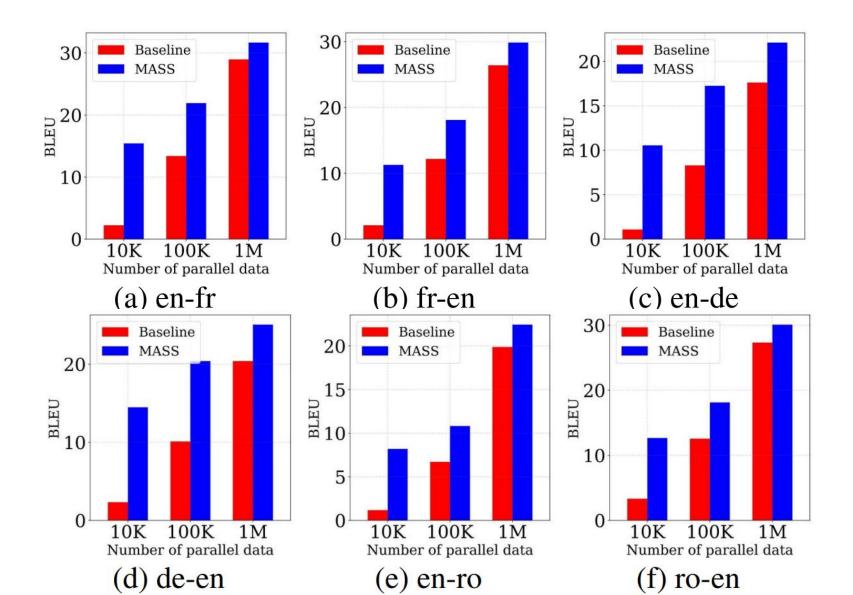
Length	Probability	Model
$k = m$ $k \in [1, m]$	$ P(x^{1:m} x^{\setminus 1:m};\theta) P(x^{u:v} x^{\setminus u:v};\theta) $	standard LM in GPT MASS

Unsupervised NMT

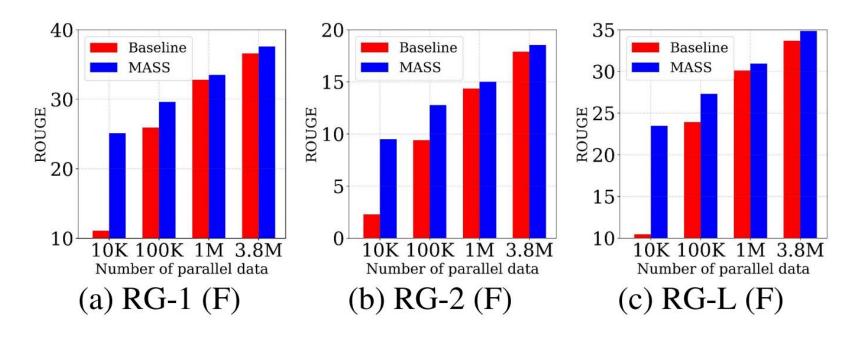


XLM: Cross-lingual language model pretraining, CoRR 2019

Low-resource NMT



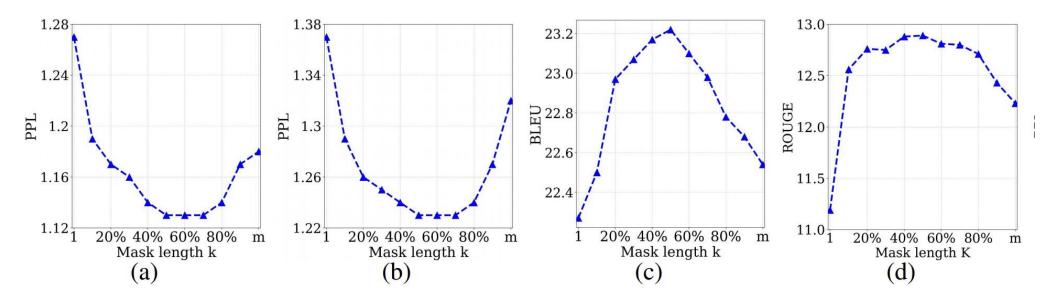
Text summarization



Gigaword Corpus

Analysis of MASS: length of masked segment

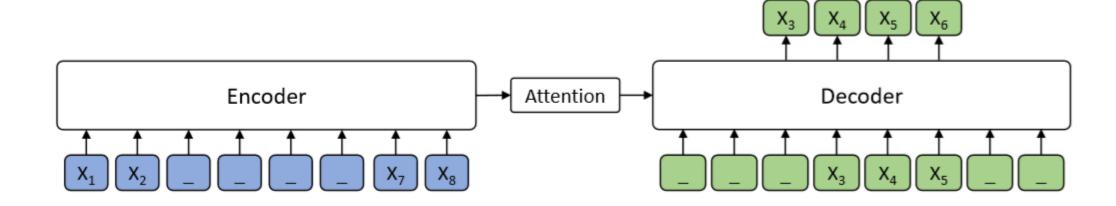
- (a), (b): PPL of the pre-trained model on En and Fr
- (c): BLEU score of unsupervised En-Fr
- (d): ROUGE of text summarization



- K=50%m is a good balance between encoder and decoder
- K=1 (BERT) and K=m (GPT) cannot achieve good performance in language generation tasks.

Summary

- MASS jointly pre-trains the encoder-attention-decoder framework for sequence to sequence based language generation tasks
- MASS achieves significant improvements over the baselines without pretraining or with other pre-training methods on zero/low-resource NMT, text summarization and conversational response generation.



Thanks!

Backup

MASS pre-training

Model configuration

- Transformer, 6-6 layer, 1024 embedding.
- Support cross-lingual tasks such as NMT, as well as monolingual tasks such as text summarization, conversational response generation.
- English, German, French, Romanian, each language with a tag.

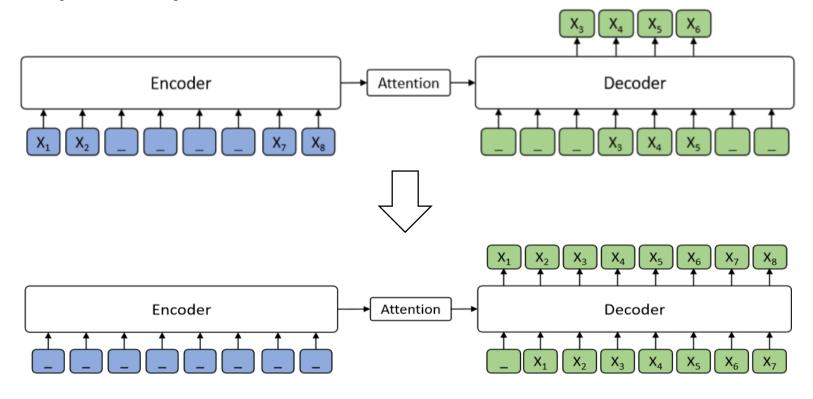
Datasets

- We use monolingual corpus from WMT News Crawl. Wikipedia data is also feasible.
- 190M, 65M, 270M, 2.9M for English, French, German, Romanian.

Pre-training details

K=50%m, 8 V100 GPUs, batch size 3000 tokens/gpu.

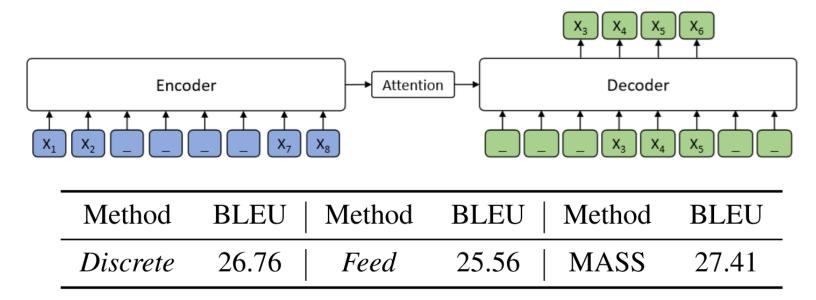
MASS $(k=m) \rightarrow GPT$



Length	Probability	Model
$k = m$ $k \in [1, m]$	$P(x^{1:m} x^{1:m};\theta)$ $P(x^{u:v} x^{u:v};\theta)$	standard LM in GPT MASS

Analysis of MASS

Ablation study of MASS



- Discrete: instead of masking continuous segment, masking discrete tokens
- Feed: Feed the tokens to the decoder that appear in the encoder

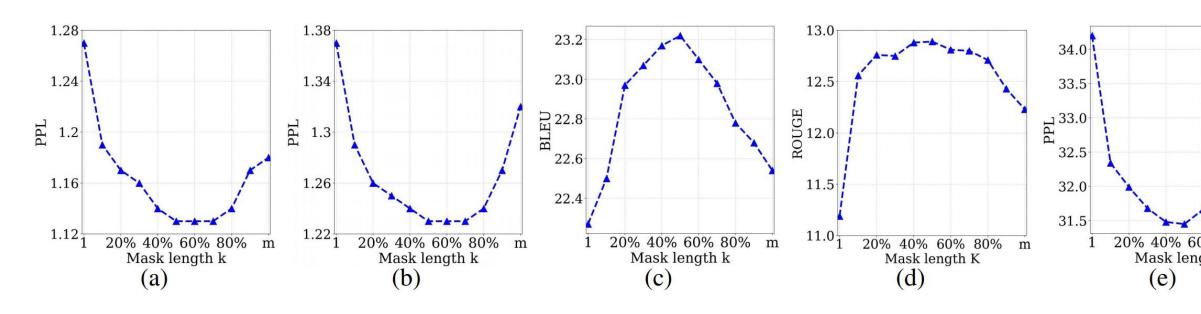
Fine-tuning on conversation response generation

• We fine-tune the model on the Cornell movie dialog corpus, and simply use PPL to measure the performance of response generation.

Method	Data = 10K	Data = 110K
Baseline BERT+LM	82.39 80.11	26.38 24.84
MASS	74.32	23.52

Analysis of MASS: length of masked segment

- (a), (b): PPL of the pre-trained model on En and Fr
- (c): BLEU score of unsupervised En-Fr
- (d), (e): ROUGE and PPL on text summarization and response generation



- K=50%m is a good balance between encoder and decoder
- K=1 (BERT) and K=m (GPT) cannot achieve good performance in language generation tasks.