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Motivation

 BERT and GPT are very successful
* BERT pre-trains an encoder for language understanding tasks
* GPT pre-trains a decoder for language modeling.

 However, BERT and GPT are suboptimal on sequence to sequence based

language generation tasks

 BERT can only be used to pre-train encoder and decoder separately.
* Encoder-to-decoder attention is very important, which BERT does not pre-train.

Method

BLEU

Without attention

26.71

With attention

36.15

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural
machine translation by jointly learning to align and translate." ICLR 2015.



MASS: Pre-train for Sequence to Sequence
Generation

 MASS is carefully designed to jointly pre-train the encoder and decoder
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* Mask k consecutive tokens (segment)

* Force the decoder to attend on the source representations, i.e., encoder-decoder
attention

* Force the encoder to extract meaningful information from the sentence
* Develop the decoder with the ability of language modeling



MASS vs. BERT/GPT
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XLM: Cross-lingual language model pretraining, CoRR 2019



Low-resource NMT
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Text summarization
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Analysis of MASS: length of masked segment

(a), (b): PPL of the pre-trained model on En and Fr

m

(c): BLEU score of unsupervised En-Fr
(d): ROUGE of text summarization
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= K=50%m is a good balance between encoder and decoder
= K=1(BERT) and K=m (GPT) cannot achieve good performance in language generation tasks.



Ssummary

* MASS jointly pre-trains the encoder-attention-decoder framework for
sequence to sequence based language generation tasks

* MASS achieves significant improvements over the baselines without pre-
training or with other pre-training methods on zero/low-resource NMT,
text summarization and conversational response generation.
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MASS pre-training

* Model configuration
* Transformer, 6-6 layer, 1024 embedding.

e Support cross-lingual tasks such as NMT, as well as monolingual tasks such as
text summarization, conversational response generation.

* English, German, French, Romanian, each language with a tag.

 Datasets

* We use monolingual corpus from WMT News Crawl. Wikipedia data is also
feasible.

* 190M, 65M, 270M, 2.9M for English, French, German, Romanian.
* Pre-training details
e K=50%m, 8 V100 GPUs, batch size 3000 tokens/gpu.



MASS (k=m) =» GPT
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Analysis of MIASS

e Ablation study of MASS
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Method BLEU | Method BLEU | Method BLEU
Discrete  26.76 | Feed 25.56 | MASS 27.41

* Discrete: instead of masking continuous segment, masking discrete tokens
* Feed: Feed the tokens to the decoder that appear in the encoder



Fine-tuning on conversation response generation

* We fine-tune the model on the Cornell movie dialog corpus, and simply
use PPL to measure the performance of response generation.

Method Data=10K | Data=110K
Baseline 82.39 26.38
BERT+ILM 30.11 24.84
MASS 74.32 23.52




Analysis of MASS: length of masked segment

(a), (b): PPL of the pre-trained model on En and Fr
(c): BLEU score of unsupervised En-Fr
(d), (e): ROUGE and PPL on text summarization and response generation
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K=50%m is a good balance between encoder and decoder
K=1 (BERT) and K=m (GPT) cannot achieve good performance in language generation tasks.
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