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Probabilistic time-frequency analysis

We previously showed that a spectral mixture Gaussian process is

equivalent to a probabilistic filter bank, i.e. a filter bank that adapts

to the signal and can make predictions / generate new data.

frequency (Hz)

fi
lt

er
re

sp
o

n
se

(d
B

)

standard filter bank

frequency (Hz)

fi
lt

er
re

sp
o

n
se

(d
B

)
probabilistic / adaptive filter bank

1



Probabilistic time-frequency analysis

We previously showed that a spectral mixture Gaussian process is

equivalent to a probabilistic filter bank, i.e. a filter bank that adapts

to the signal and can make predictions / generate new data.

[Prior] f (t) ∼ GP

(
0,

D∑
d=1

σ2
d exp(−|t − t ′|/`d) cos(ωd (t − t ′)

)
,

[Likelihood] yk = f (tk) + σyk
εk ,
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End-to-End probabilistic time-frequency analysis

The next step in the signal processing chain is often to analyse the

dependencies in the spectrogram, with e.g. non-negative matrix

factorisation (NMF).
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End-to-End probabilistic time-frequency analysis

Time (sampled at 16 kHz)
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GP spectrogram = NMF weights (W) × positive modulator GPs (gn(t))
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The model

GP prior:

fd(t) ∼ GP
(
0, σ2

d exp(−|t − t ′|/`d) cos(ωd (t − t ′)
)
, d = 1, 2, . . . ,D,

gn(t) ∼ GP(0, κ(n)
g (t, t ′)), n = 1, 2, . . . ,N,

Likelihood model:

yk =
∑
d

ad(tk) fd(tk) + σy εk ,

for square amplitudes (the magnitude spectrogram):

a2
d(tk) =

∑
n

Wd,n softplus(gn(tk)),

This is a nonstationary spectral mixture GP
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Inference

We show how to write the model as a stochastic differential equation:

d̃f(t)

dt
= Ff̃(t) + Lw(t),

yk = H(f̃(tk)) + σyεk ,

such that inference can proceed via Kalman filtering & smoothing.

Usually the nonlinear H(·) is dealt with via linearisation (EKF), but we

implement full Expectation Propagation (EP) in the Kalman

smoother, and the infinite-horizon solution which scales as:

O(M2T )
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Applications and Results

The fully probabilistic model can, without modification, be applied to:

Missing Data

Synthesis
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Figure 1: An example of missing data imputation with the GTF-NMF
model for each inference method with 20 iterations. Grey signal is
the ground truth, a recording of a bamboo flute. The yellow shaded
region indicates where the data is missing. Blue shaded area is the 95%
confidence region for the EP method.
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Figure 1: Denoising with various inference methods across five levels
of corruption noise variance (0.01–0.5). y-axis is the signal-to-noise
ratio of the recovered waveform. Mean values across 10 speech signals
are shown. Shaded areas are standard error. SpecSub is the spectral
subtraction baseline.
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Figure 1: Infinite-horizon GP source separation example showing three
piano notes (sources) recovered from a mixture signal (top), where two
notes are played at a time in the original recording.
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Contact: william.wilkinson@aalto.fi
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