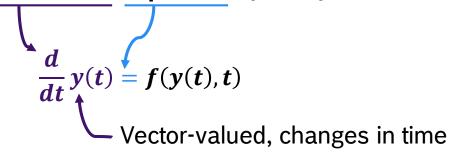
GOODE: A GAUSSIAN OFF-THE-SHELF ORDINARY DIFFERENTIAL EQUATION SOLVER

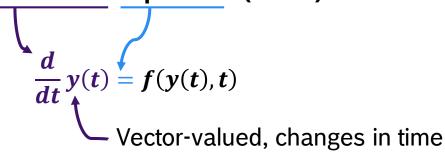
DAVID N. JOHN^{1,2}, VINCENT HEUVELINE², MICHAEL SCHOBER³


- ¹ CORPORATE RESEARCH, ROBERT BOSCH GMBH, RENNINGEN, GERMANY ² ENGINEERING MATHEMATICS AND COMPUTING LAB (EMCL), HEIDELBERG UNIVERSITY, GERMANY
- ³ BOSCH CENTER FOR ARTIFICIAL INTELLIGENCE, RENNINGEN, GERMANY

36TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING LONG BEACH, CALIFORNIA, JUNE 9TH – 15TH, 2019

GOODE: A Gaussian Off-The-Shelf ODE Solver What are we doing?

Ordinary Differential Equations (ODEs)



- ► Important mathematical models
- ► Broad range of applications

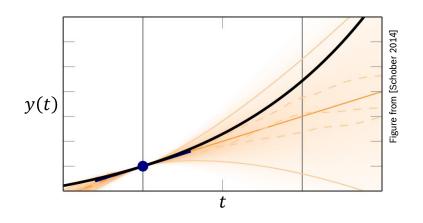
GOODE: A Gaussian Off-The-Shelf ODE Solver What are we doing?

Ordinary Differential Equations (ODEs)

- ► Important mathematical models
- ▶ Broad range of applications
- ► Recently ODE (solver) also in ML, e.g.
 - ▶ Building blocks in NNets [Chen 2018] Neural ODEs
 - ► [Grathwohl 2019] FFJORD
 - ► Accelerate optimization [Zhang 2018]

GOODE: A Gaussian Off-The-Shelf ODE Solver What are we doing?

Ordinary Differential Equations (ODEs)


 $\frac{d}{dt}y(t) = f(y(t), t)$ Vector-valued, changes in time

- ► Important mathematical models
- ▶ Broad range of applications
- ► Recently ODE (solver) also in ML, e.g.
 - ▶ Building blocks in NNets [Chen 2018] Neural ODEs
 - ► [Grathwohl 2019] FFJORD
 - ► Accelerate optimization [Zhang 2018]

ODE approximation! → Error!

Probabilistic Numerical Methods (PNMs)

- ▶ Return probability distributions
- ► Represent numerical approximation error

Be certain about your uncertainty!

GOODE: A Gaussian Off-The-Shelf ODE Solver More specific!

What is the problem?

Nonlinear two-point **Boundary Value Problem (BVP)**

Find
$$y: [a, b] \rightarrow \mathbb{R}^d$$
 such that

ODE
$$y'(t) = f(y(t), t)$$

BC $0 = g(y(a), y(b))$

Standard non-probabilistic solver exist.

But no general-purpose probabilistic solver!

More specific!

What is the problem?

Nonlinear two-point **Boundary Value Problem (BVP)**

Find $y: [a, b] \to \mathbb{R}^d$ such that

ODE
$$y'(t) = f(y(t), t)$$

BC $0 = g(y(a), y(b))$

Standard non-probabilistic solver exist.

But no general-purpose probabilistic solver!

GOODE specs

- Novel functionality: probability distribution over solution space
- ❖ Intrinsic error estimation
- Convergence theory exists

More specific!

What is the problem?

Nonlinear two-point **Boundary Value Problem (BVP)**

Find $y: [a, b] \to \mathbb{R}^d$ such that

ODE
$$y'(t) = f(y(t), t)$$

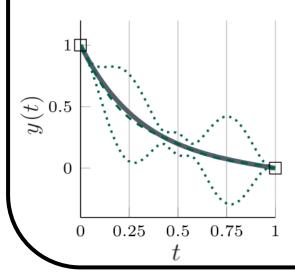
BC $0 = g(y(a), y(b))$

Standard <u>non-probabilistic</u> solver exist. But no general-purpose probabilistic solver!

GOODE specs

- Novel functionality: probability distribution over solution space
- ❖ Intrinsic error estimation
- Convergence theory exists

How does GOODE work?

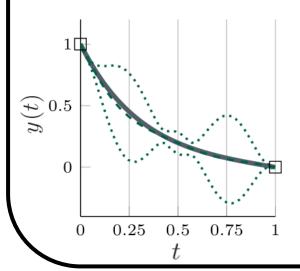

GOODE: A Gaussian Off-The-Shelf ODE Solver How does GOODE work?

Gaussian Process regression for linear BVP

[Owhadi 2015; 2017], [Cockayne 2016]

$$\left[\frac{d}{dt} - A\right] y(t) = q(t)$$

$$P(y(t)) = GP(m(t), k(t, t') \otimes V)$$

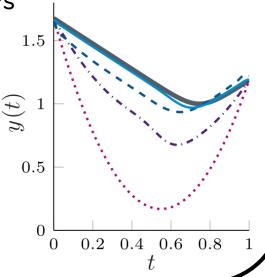

How does GOODE work?

Gaussian Process regression for linear BVP

[Owhadi 2015; 2017], [Cockayne 2016]

$$\left[\frac{d}{dt} - A\right] y(t) = q(t)$$

$$P(y(t)) = GP(m(t), k(t, t') \otimes V)$$

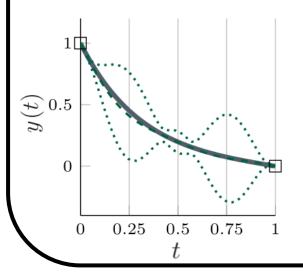


Quasilinearization of nonlinear BVP

[Bellman, Kalaba 1965]

Newton's method in function space

▶ Series of linear BVPs


How does GOODE work?

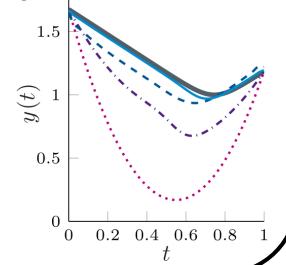
Gaussian Process regression for linear BVP

[Owhadi 2015; 2017], [Cockayne 2016]

$$\left[\frac{d}{dt} - A\right] y(t) = q(t)$$

$$P(y(t)) = GP(m(t), k(t, t') \otimes V)$$

Quasilinearization of nonlinear BVP


[Bellman, Kalaba 1965]

Newton's method in function space

Series of linear BVPs

Iteratively approximate nonlinear problem

How does GOODE work?

Gaussian Process regression for linear BVP

[Owhadi 2015; 2017], [Cockayne 2016]

$$\left[\frac{d}{dt} - A\right] y(t) = q(t)$$

$$P(y(t)) = GP(m(t), k(t, t') \otimes V)$$

Quasilinearization of nonlinear BVP

[Bellman, Kalaba 1965]

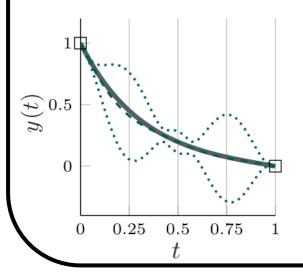
Newton's method in function space

► Series of linear BVPs

GOODE

Iteratively approximate nonlinear problem

0.2 0.4 0.6 0.8

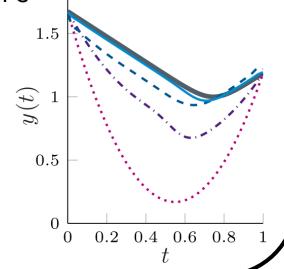

How does GOODE work?

Gaussian Process regression for linear BVP

[Owhadi 2015; 2017], [Cockayne 2016]

$$\left[\frac{d}{dt} - A\right] y(t) = q(t)$$

$$P(y(t)) = GP(m(t), k(t, t') \otimes V)$$



Quasilinearization of nonlinear BVP

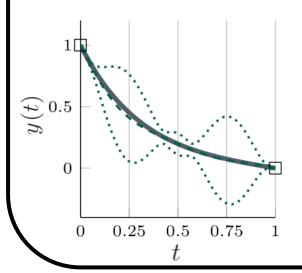
[Bellman, Kalaba 1965]

Newton's method in function space

► Series of linear BVPs

GOODE

Iteratively approximate nonlinear problem

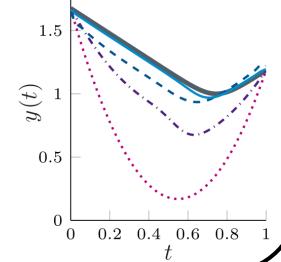

How does GOODE work?

Gaussian Process regression for linear BVP

[Owhadi 2015; 2017], [Cockayne 2016]

$$\left[\frac{d}{dt} - A\right] y(t) = q(t)$$

$$P(y(t)) = GP(m(t), k(t, t') \otimes V)$$



Quasilinearization of nonlinear BVP

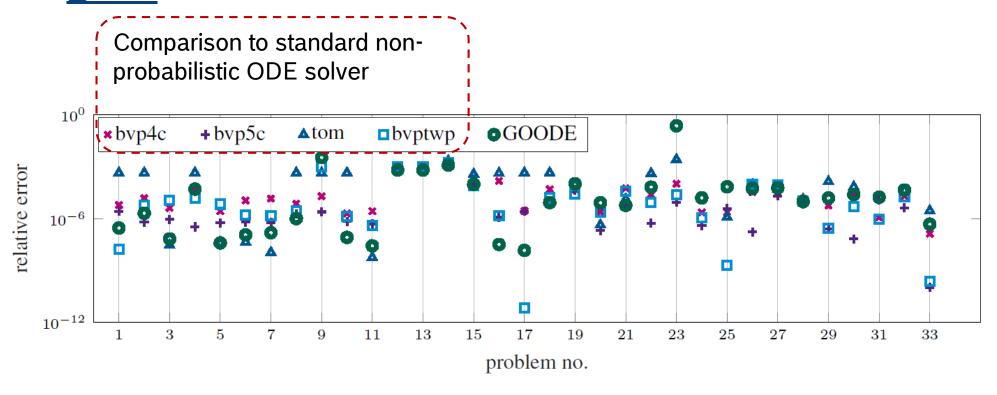
[Bellman, Kalaba 1965]

Newton's method in function space

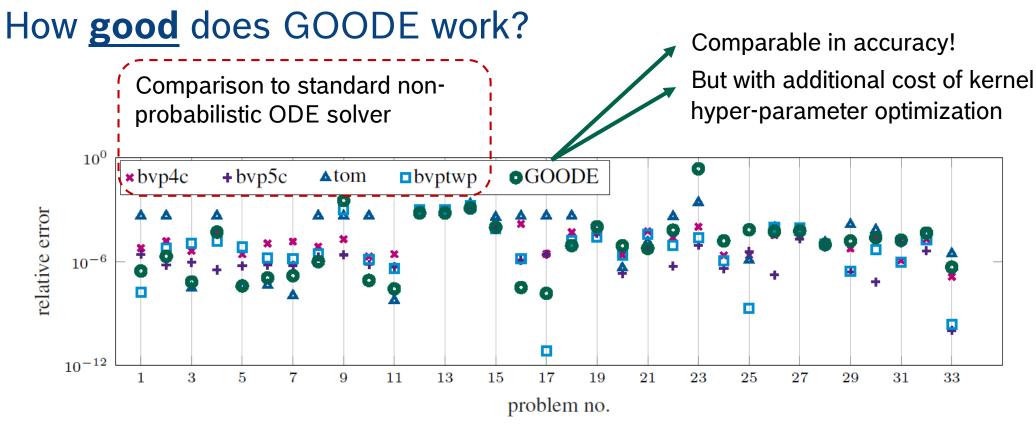
► Series of linear BVPs

GOODE

Iteratively approximate nonlinear problem

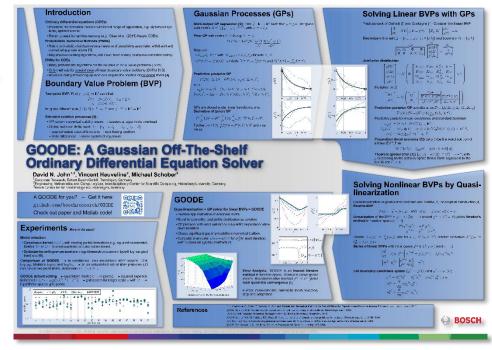


Return predictive posterior GP



GOODE: A Gaussian Off-The-Shelf ODE Solver How **good** does GOODE work?

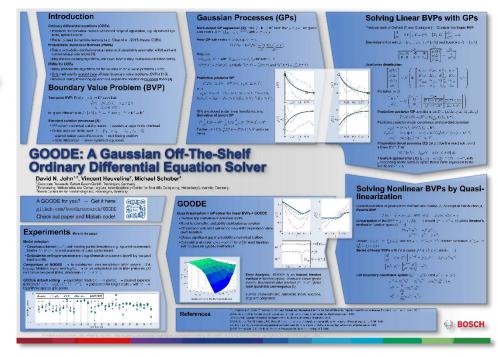
Testset of 33 problems [Mazzia 2014]


Testset of 33 problems [Mazzia 2014]

GOODE: A Gaussian Off-The-Shelf ODE Solver Want to know more?

Matlab code @ github.com/boschresearch/GOODE

Poster #214



GOODE: A Gaussian Off-The-Shelf ODE Solver Want to know more?

Matlab code @ github.com/boschresearch/GOODE

Poster #214

THANK YOU!

