Imperial College London

12 June 2019

Graph Convolutional Gaussian Processes

Ian Walker and Ben Glocker {ian.walker14, b.glocker}@imperial.ac.uk

Imperial College London

Background

Why Graphs?

Non-Euclidean domains are everywhere! Useful information in the structure of an observation.

Geometric Deep Learning provides many insights.

Large number of parameters, small number of observations.

Bayesian methods and Gaussian processes.

Typically perform poorly with large input dimensions. Convolutional Gaussian Processes (van der Wilk, et al 2017) Provide an efficient algorithm for estimating GPs that decompose into functions on subsets of inputs.

Imperial College London

Graph Convolutional Gaussian Processes

$$f(\psi) = \sum_{i \in \mathcal{V}} g(\mathbf{z}^{[i]})$$

$$g \sim \mathcal{GP} \left(\mathbf{0}, k_g(\mathbf{t}, \mathbf{t}') \right)$$

$$\Rightarrow f \sim \mathcal{GP} \left(\mathbf{0}, \sum_{i=1}^{|\mathcal{V}|} \sum_{j=1}^{|\mathcal{V}'|} k_g(\mathbf{z}^{[i]}, \mathbf{z}'^{[j]}) \right)$$

$$z_k^{[\nu]} = D_k(\nu) \psi$$

$$= \sum \psi(\nu') u_k(\nu, \nu')$$
(2)

 $\forall v \in \mathcal{V}, \quad k = 1 \dots K$

v

Imperial College London Related Work and Contributions

Graph GPs (Ng et al., 2018) rely on the graph Laplacian, which limits their applicability to the same domain: Same number of vertices and edge structure.

GCGPs can be applied across domains with different edge structure.

Imperial College London MNIST Results

Table 1: Error rates on MNIST classification

Method	Error rate		
MNIST			
Conv. GP (25-dim) †	2.1%		
RBF GP (784-dim) †	1.9%		
GCGP (24-dim)	1.7%		

† van der Wilk, et al (2017)

Imperial College London Superpixel MNIST Result

Superpixel MNIST Results

Table 2: Error rates on Superpixel MNIST classification

Method	Error rate
MNIST Superpixel 75	
ChebNet (Defferrard, et al 2016)	24.4%
MoNet (Monti, et al 2017)	8.9%
GCGP	4.2%
Table 3: Ablation study on Superpixel 7	5 error rates

Examples per class	100	500	1000
Error rate	13.7%	8.3%	6.3%

Imperial College London 3D Mesh Results

Table 4: Error rates on MPI Faust mesh classification

Number of vertices	500	1000	2500
MoNet GCGP	40.00% 23.33%	33.33% 10.00%	33.33% 3.33%

Imperial College London Acknowledgements

Thank You!

Poster tonight at 6:30 PM in Pacific Ballroom 212

Imperial College London

