IIT:

Learned Intermediate representation Training for Model Compression

Animesh Koratana*, Daniel Kang*, Peter Bailis, Matei Zaharia DAWN Project, Stanford InfoLab http://dawn.cs.stanford.edu/

STANFORD DAWN

LIT can compress models up to 4x on CIFAR10: ResNet -> ResNet

This talk: achieving higher compression on modern deep networks

Deep networks can be compressed to reduce inference costs

e.g., deep compression, knowledge distillation, FitNets, ...

Knowledge distillation

Knowledge

Teacher

Student

These methods are largely architecture agnostic

LIT: Learned Intermediate-representation Training for modern, very deep networks

Modern networks have highly repetitive sections – can we compress them?

LIT: Learned Intermediate-representation Training for modern, very deep networks

LIT penalizes deviations in intermediate representations of architectures with the same width

LIT: Learned Intermediate-representation Training for modern, very deep networks

LIT uses the **output** of the teacher model's **previous section** as input to the student model's **current section**

LIT can compress models up to 4x on CIFAR10: ResNet -> ResNet

LIT can compress StarGAN up to 1.8x

Model	Inception score	FID score
	(higher is better)	(lower is better)
Teacher (18)	3.49	6.43
LIT student (10)	3.56	5.84
L2 student (10)	3.46	6.47
From scratch (10)	3.37	6.56
Rand init (10)	2.63	94.00
Rand init (18)	2.45	151.43

Student model outperforms teacher in Inception/FID score

LIT can compress GANs up to 1.8x

Student model also outperforms teacher in qualitative evaluation

Conclusions

Neural networks are becoming more expensive to deploy

- LIT is a novel technique that combines both:
- 1. Intermediate representations and
- 2. matching outputs

that improves training to give 3-5x compression for many tasks

ddkang@stanford.edu koratana@stanford.edu

Find our poster at Pacific Ballroom, #17!