Obtaining Fairness using Optimal Transport Theory

ICML 2019, Long Beach

E. del Barrio ${ }^{a}$, F. Gamboa ${ }^{b}$, P. Gordaliza ${ }^{a, b}$ and JM. Loubes ${ }^{b}$ a : IMUVa (Universidad de Valladolid) b : IMT (Université de Toulouse)

Framework for achieving Fairness

$$
\begin{aligned}
& \text { Target class } \\
& Y=\left\{\begin{array}{ccc}
0 & \text { failure } & \text { Visible attributes }
\end{array} \quad\right. \text { Protected attribute } \\
& 1
\end{aligned} \text { success } \quad X \in \mathbb{R}^{d}, d \geqslant 1, \quad S=\left\{\begin{array}{cc}
0 & \text { unfavored } \\
1 & \text { favored }
\end{array}\right.
$$

Goal: Replace X by \tilde{X} such that for all $g \in \mathcal{G}$
$\mathcal{L}(g(\tilde{X}) \mid S=0)=\mathcal{L}(g(\tilde{X}) \mid S=1)$

Questions:

a) Best choice for the distribution $\tilde{X} \sim \nu$?
b) Optimal way of transporting μ_{1} and μ_{0} to ν ?

Reasonable and feasible solutions: T_{S} optimal transport map carrying μ_{S} towards their Wasserstein barycenter μ_{B} with weights $\pi_{0}=P(S=0)$ and $\pi_{1}=P(S=1)$:

$$
\begin{aligned}
& \mu_{S \sharp} T_{S}=\mu_{B} \\
& \mu_{B} \in \operatorname{argmin}_{\nu \in \mathcal{P}_{2}}\left\{\pi_{0} W_{2}^{2}\left(\mu_{0}, \nu\right)+\pi_{1} W_{2}^{2}\left(\mu_{1}, \nu\right)\right\}
\end{aligned}
$$

Our proposal

1. Justification for repair with Wasserstein Barycenter: under some regularity conditions, $\mathcal{E}(\tilde{X}):=R_{B}(\tilde{X})-R_{B}(X, S)$

$$
\mathcal{E}(\tilde{X}) \leq 2 \sqrt{2} K\left(\sum_{s=0,1} \pi_{s} \mathcal{W}_{2}^{2}\left(\mu_{s}, \mu_{s \sharp} T_{s}\right)\right)^{\frac{1}{2}}, K>0
$$

2. Multidimensional extension for Total Repair
3. New Partial Repair method: Random Repair (Improvement of Geometric Repair)

For $s \in\{0,1\}$,

$$
\begin{aligned}
& \tilde{\mu}_{s, \lambda}=\mathcal{L}\left(B T_{s}(X)+(1-B) X \mid S=s\right), \\
& B \sim \mathcal{B}(\lambda) \text { with } \lambda \in(0,1) \text { level of repair }
\end{aligned}
$$

$$
\begin{gathered}
\lambda=0 \\
\text { Accuracy } \\
\text { of } g(\tilde{X})
\end{gathered} \quad \longleftarrow \text { Trade-off } \longrightarrow \begin{gathered}
\lambda=1 \\
\text { Blurring } \\
\text { of } S
\end{gathered}
$$

Related work

[E. del Barrio and J.-M. Loubes. (2019) Central limit theorems for empirical transportation cost in general dimension. The Annals of Probability, 47, 926-951.
E. del Barrio, P. Gordaliza and J.-M. Loubes. (2019) A central limit theorem on the real line with application to fairness assessment in machine learning. Information and Inference: A Journal of the IMA.

Thanks for the attention!

