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Problem setting

* Distribution D over examples: (X, A4,Y)
e X: feature vector
» A: discrete protected attribute (e.g. racial groups, gender)
* Y € |0, 1]: real-valued label (e.g. risk score, recidivism rate)

 Prediction task: given loss function € (e.g. square loss, logistic loss)
find a predictor f € F to minimize Ep[ (Y, f(X)]

e £ is 1-Lipschitz:
tu) =2 Ul < |y =yl +u -



Fairness notion: Statistical Parity

* Statistical parity (SP): f(X) is independent of protected attribute A
PlfX)zz|[A=a]=P[f(X) = 2z]

for all groups aand z € [0, 1]

* Implies any thresholding of f(X) is fair!
* Motivated by practice of affirmative action as well as four-fifths rule



Fairness notion: Bounded Group LOSS

* Bounded group loss (BGL): bounded group loss at level n

Ep[2(Y,f(X))|A=a] <7

for all groups a.

* Enforces minimum prediction quality for each group

* Diagnostic to detect groups requiring further data collection, better
features, etc.

e Similar to minmax fairness



Main results

* Reduction-based algorithm: a provably efficient algorithms that
iteratively solves a sequence of supervised learning problems
(without fairness constraints):

e Risk minimization under ¢
e Square loss minimization
e Cost-sensitive classification (or weighted classification problem)

* Finite sample guarantees on:
* Accuracy
* Fairness violations



Empirical Evaluation

* Fairness constraint: statistical parity
e Data sets: Adult, Law School, Communities & Crime
* Losses: square loss, logistic loss

e Reductions:

e Cost-sensitive classification (CS)
e Square loss minimization (LS)
 Logistic loss minimization (LR)

* Predictor classes: linear and tree ensemble
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