Fair Regression:

Quantitative Definitions and Reduction-Based Algorithms

Steven Wu
(University of Minnesota)

Joint work with: Alekh Agarwal and Miro Dudík
(Microsoft Research)

Problem setting

- Distribution D over examples: (X, A, Y)
 - *X*: feature vector
 - A: discrete protected attribute (e.g. racial groups, gender)
 - $Y \in [0, 1]$: real-valued label (e.g. risk score, recidivism rate)

- Prediction task: given loss function ℓ (e.g. square loss, logistic loss) find a predictor $f \in F$ to minimize $E_D[\ell(Y, f(X))]$
- ℓ is 1-Lipschitz:

$$|\ell(y,u) - \ell(y',u')| \le |y - y'| + |u - u'|$$

Fairness notion: Statistical Parity

• Statistical parity (SP): f(X) is independent of protected attribute A

$$P[f(X) \ge z \mid A = a] = P[f(X) \ge z]$$

for all groups a and $z \in [0, 1]$

- Implies any thresholding of f(X) is fair!
- Motivated by practice of affirmative action as well as four-fifths rule

Fairness notion: Bounded Group Loss

• Bounded group loss (BGL): bounded group loss at level η

$$E_D[\ell(Y, f(X))|A = a] \le \eta$$

for all groups a.

- Enforces minimum prediction quality for each group
- Diagnostic to detect groups requiring further data collection, better features, etc.
- Similar to minmax fairness

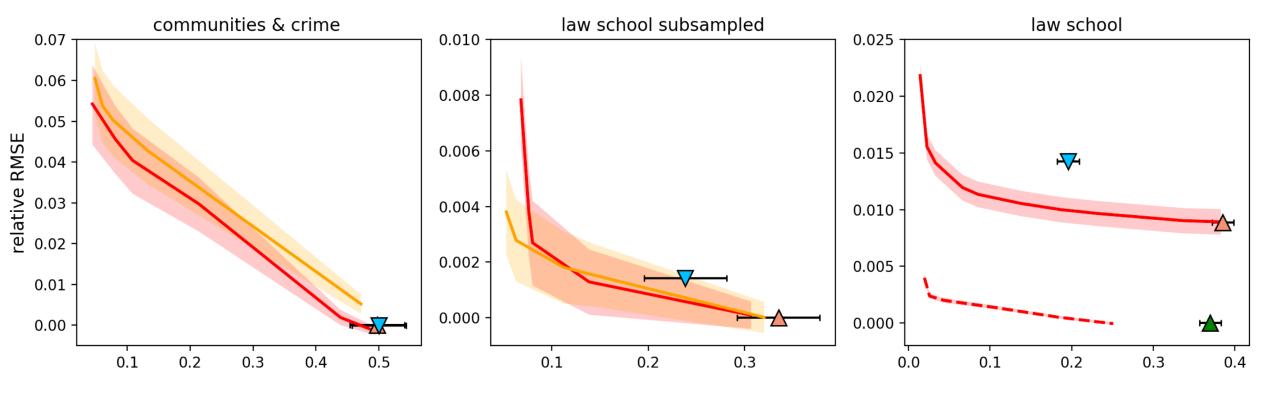
Main results

- Reduction-based algorithm: a provably efficient algorithms that iteratively solves a sequence of supervised learning problems (without fairness constraints):
 - Risk minimization under ℓ
 - Square loss minimization
 - Cost-sensitive classification (or weighted classification problem)

- Finite sample guarantees on:
 - Accuracy
 - Fairness violations

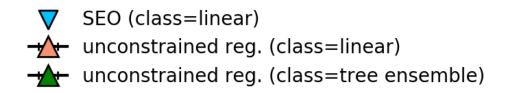
Empirical Evaluation

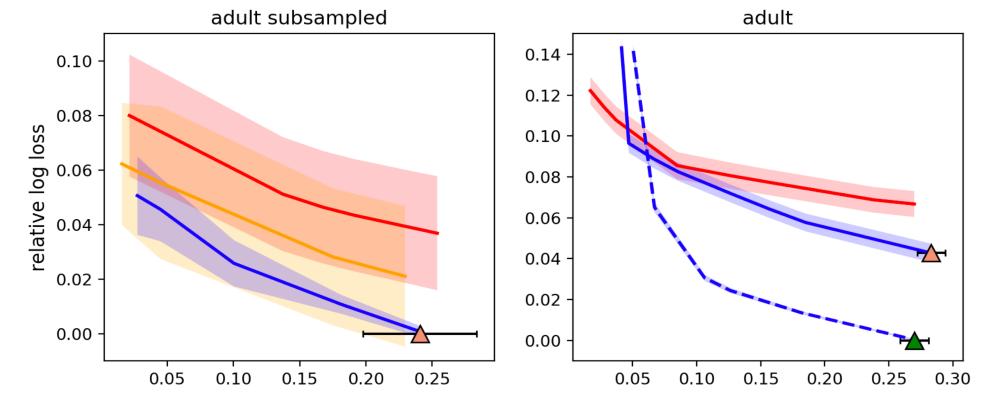
- Fairness constraint: statistical parity
- Data sets: Adult, Law School, Communities & Crime
- Losses: square loss, logistic loss
- Reductions:
 - Cost-sensitive classification (CS)
 - Square loss minimization (LS)
 - Logistic loss minimization (LR)
- Predictor classes: linear and tree ensemble



Statistical Parity Disparity (CDF distance)

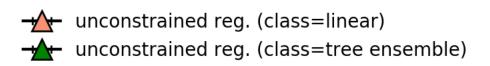
fair reg. (oracle=CS, class=linear)
 fair reg. (oracle=LS, class=linear)
 fair reg. (oracle=LS, class=tree ensemble)





Statistical Parity Disparity (CDF distance)

```
fair reg. (oracle=CS, class=linear)
fair reg. (oracle=LS, class=linear)
fair reg. (oracle=LS, class=tree ensemble)
fair reg. (oracle=LR, class=linear)
fair reg. (oracle=LR, class=tree ensemble)
```



Fair Regression: Quantitative Definitions and ReductionBased Algorithms

Poster: Thurs @ Pacific Ballroom #132

