Stable and Fair Classification

Nisheeth Vishnoi

Yale

- NisheethVishnoi

Joint work with Lingxiao Huang (EPFL)

Poster 130, Pacific Ballroom, 6:30-9:00 pm, Thursday, June 13

Classification

Given the data of an individual Decide whether to recommend them a high-salary job or not?

Classifier's performance/accuracy can vary with the sensitive type
Group Fairness/Statistical parity False positive Calibration
Negative predictive parity
False discovery
False omission ...

Optimization for Fair Classification

- F F : reproducing kernel Hilbert space, e.g., $\{\langle\beta, \cdot\rangle\}$
- $L(\cdot, \cdot)$: loss function
- N Samples: $s_{i}=\left(x_{i}, z_{i}, y_{i}\right) \in X(f e a) \times[p]$ (type) $\times\{0,1\}$ (label)
- $\quad \Omega(f)$: fairness constraints

$$
\begin{aligned}
\min _{f \in \mathcal{F}} & \frac{1}{N} \sum_{i \in[N]} L\left(f, s_{i}\right) \\
\text { s.t. } & \Omega(f) \leq 0
\end{aligned}
$$

Example (logistic regression loss function + statistical parity/80\%-rule)

$$
\begin{aligned}
& \min _{\alpha \in \mathbb{R}^{N}} \frac{1}{N} \sum_{i \in[N]} \ln \left(1+y_{i} \cdot e^{-\sum_{j \in[N]} \alpha_{j} k\left(x_{i}, x_{j}\right)}\right), \text { s.t. } \\
& 0.8-\frac{\min _{i \in[p]} P r_{D}[f=1 \mid Z=i]}{\max _{i \in[p]} P r_{D}[f=1 \mid Z=i]} \leq 0
\end{aligned}
$$

- $k(\cdot, \cdot)$: kernel function
- D: empirical distribution over the training dataset S

Stability Problem in Fair Classification

Fair Classifier f

Definition (β-Uniform stability [Bousquet \& Elisseeff '02])

The maximum l_{∞}-distance between the risks of two classifiers learned from two training sets that differ in a single sample is upper bounded by β, i.e., $\left\|L(f, \cdot)-L\left(f^{\prime}, \cdot\right)\right\|_{\infty} \leq \beta$

- Existing fair classification algorithms may not be stable [Friedler et al. '19]
- Study the standard deviation of the statistical rate γ over ten random training-testing splits with respect to race/sex attribute over the Adult dataset
- The standard deviation of γ is 2.4% for [Kamishima et al. ' 12] with respect to the race attribute, and is 4.1% for [Zafar et al. '17b] with respect to the sex attribute

Question: Can we design stable and fair classification algorithms?

Our results

We provide an extended algorithmic framework to constrained-optimization based fair classification algorithms that ensures both stability and fairness

1. Provable guarantees: our framework provides a uniform stability guarantee $\left(\frac{\sigma^{2} \kappa^{2}}{\lambda N}\right)$ and an empirical risk guarantee $\left(\frac{\sigma^{2} \kappa^{2}}{\lambda N}+\lambda B^{2}\right)$
2. Empirical risk guarantee can be used to inform the selection of the regularization parameter $\lambda\left(\frac{\sigma \kappa}{B \sqrt{N}}\right)$
3. The resulting optimization problem is polynomial time solvable

			λ					
			0	0.01	0.02	0.03	0.04	0.05
ZVRG-St	Race	Acc.	0.844(0.001)	0.842(0.001)	0.841(0.001)	0.840(0.001)	0.838(0.001)	0.838(0.001)
		γ	0.577(0.031)	0.667(0.020)	0.686(0.015)	0.711(0.016)	0.743(0.013)	0.761(0.012)
	Sex	Acc.	0.844 0.001)	0.840(0.001)	0.838(0.001)	0.838(0.001)	0.837(0.001)	0.836 0.001)
		γ	0.3310 .041	0.501(0.011)	0.495(0.009)	0.478(0.009)	0.463(0.009)	0.4690 .009
KAAS-St	Race	Acc.	0.850(0.001)	0.844(0.001)	0.843(0.001)	0.839(0.001)	0.837(0.001)	0.835(0.001)
		γ	0.571(0.019)	0.359(0.024)	0.302(0.011)	0.301(0.011)	0.300(0.015)	0.298(0.015)
	Sex	Acc.	0.850(0.002)	0.848(0.001)	0.844(0.001)	0.839(0.001)	0.837(0.001)	0.835(0.001)
		γ	0.266(0.011)	0.226(0.011)	0.165(0.008)	0.136(0.007)	0.128(0.006)	0.128(0.005)
GYF-St	Race	Acc.	0.849(0.001)	0.845(0.001)	0.844(0.001)	0.842(0.001)	0.840(0.001)	0.835(0.001)
		γ	0.558(0.020)	0.679(0.013)	0.690(0.017)	0.710(0.018)	0.740(0.014)	0.753(0.013)
	Sex	Acc.	0.850(0.002)	0.845(0.001)	0.844(0.001)	0.842(0.001)	0.840(0.001)	0.839(0.001)
		γ	0.275(0.010)	0.245(0.004)	0.242(0.004)	0.241(0.005)	0.245(0.005)	0.234(0.008)

Adult dataset. γ : statistical rate; "-St": our extended framework on fair classification algorithms; ZVRG [Zafar et al. '17b], KAAS [Kamishima et al. '12], GYF [Goel et al. '18]

We introduce a stability-focused regularization term $\lambda\|f\|_{k}^{2}$ where $k(\cdot$,$) is the kernel function$

$$
\begin{gathered}
\min _{f \in \mathcal{F}} \frac{1}{N} \sum_{i \in[N]} L\left(f, s_{i}\right)+\lambda\|f\|_{k}^{2} \\
\text { s.t. } \Omega(f) \leq 0
\end{gathered}
$$

Assumptions:

- For all $x, k(x, x) \leq \kappa^{2}$;
- $L(f, s)$ is σ-Lipschitz w.r.t f;
- $\Omega(f)$ is convex;
- For all $f \in \mathcal{F},\|f\|_{k} \leq B$

More stable with slight loss in accuracy

- As λ increases, the average accuracy slightly decreases, by at most 1.5%
- The standard deviation of γ decreases from 4.1% to around 1% as λ increases \rightarrow more stable

Conclusion and Future Work

- We propose an extended framework that for the first time combines stability and fairness in classification
- Our framework comes with a stability guarantee and we also provide an analysis of the resulting accuracy
- There exist other fair classification algorithms that are not formulated as optimization problems. Can we investigate and improve the stability guarantee of those algorithms?
- Combine stability and fairness for other automated decision-making tasks?

> Thank you!

Poster 130, Pacific Ballroom, 6:30-9:00 pm, Thursday, June 13

