Stochastic Deep Networks

Gwendoline De Bie, Gabriel Peyré, Marco Cuturi

Deep Architectures on Density Inputs

t=3, 890 cells

t=1, *1000 cells* t=2, *650 cells* of varying physical attributes

Representing inputs as **densities** (discretized in practice)

➤ How to define a 'layer' of a Deep Net taking such inputs ?

Proposed Layer: Elementary Block (EB)

$$X \longrightarrow EB_{f} \longrightarrow Y = EB_{f}(X) = \mathbb{E}_{X' \sim X}[f(X, X')]$$

andom deterministic or *random*

Discrete case: $X \sim \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$ Fully connected case: $f(x, u) = (\phi(y_i))_i$ $\rightarrow Y \sim \frac{1}{n} \sum_{i=1}^{n} \delta_{y_i}$, where: $y_i = \sum_{j=1}^{n} f(x_i, x_j)$ where $y = A \cdot [x, u]^T + b$, ϕ non-linearityDeterministic output: f(x, u) = g(u)Classical warping: f(x, u) = h(x) $\rightarrow Y = \mathbb{E}_{X'}[g(X')]$ deterministic $\rightarrow Y = h(X)$ random

Tasks			
Discriminative	Generative	Predictive	
Y deterministic	Y random	Y random	
X random	X noise + code	X random	

Approximation Property

> Theoretically, three blocks are enough

Theorem (Universal Approximation). Let F a continuous map for the convergence in law, mapping measures supported on compact sets. Then *three EBs* are necessary to approximate F *arbitrarily close*: $\forall \epsilon > 0$, there exists three continuous maps *f*, *g*, *h*, such that, for all random vectors X,

Wasserstein₁(F(X), EB_h $\circ \Lambda \circ EB_g \circ EB_f(X)$) $\leq \epsilon$

where $\Lambda: X \mapsto (X, U)$ concatenates a uniform random vector.

Classification		Generation	Dynamics
MNIST as <i>point clouds</i>	Modelnet40 as <i>point clouds</i>	MNIST as <i>point clouds</i>	Flocking model
99,2% accuracy, 2 EBs	83,5% accuracy, 2 EBs	2 EBs	5 EBs
	Server Street	199944465326000 1999444665326000 19994665322000 1997779966532200 1997779966532200	
		1111155000 1111155000 111115500 1111115500 1111115500 1111115500	٠

Conclusion / Open Problems

- New formalism for stochastic deep architectures
 - > Probability distributions
 - Deterministic feature vectors
- Robustness & approximation power
- Perspectives
 - > Understanding block roles
 - > Investigate translation & rotation equivariance

Poster: #30 Pacific Ballroom today - see you there !