

The Evolved Transformer

David R. So Chen Liang Quoc V. Le

Can we apply Neural Architecture Search to feedforward sequence models?

- Evolution
 - simple
 - works well in vision domain

- Evolution
 - simple
 - works well in vision domain
- Obstacles
 - large search space
 - high compute task

- Evolution
 - simple
 - works well in vision domain

- Obstacles

- large search space
- high compute task
- Solutions:
 - First Warm Start NAS

- Evolution
 - simple
 - works well in vision domain
- Obstacles
 - large search space
 - high compute task
- Solutions:
 - First Warm Start NAS
 - Progressive Dynamic Hurdles (PDH): discard bad models for cheap

Evolved Transformer Performance

Model	Embedding Size	BLEU	Δ BLEU
Transformer	128	21.3 ± 0.1	10 4
ET	128	$\textbf{22.0}\pm0.1$	+ 0.7
Transformer	432	27.3 ± 0.1	
ET	432	$\textbf{27.7}\pm0.1$	+ 0.4
Transformer	512	27.7 ± 0.1	-
ET	512	$\textbf{28.2}\pm0.1$	+ 0.5
Transformer	768	28.5 ± 0.1	-
ET	768	$\textbf{28.9}\pm0.1$	+ 0.4
Transformer	1024	28.8 ± 0.2	-
ET	1024	$\textbf{29.0}\pm0.1$	+ 0.2

Evolved Transformer Performance

• State of the Art on WMT En-De

Work	Model	Params	BLEU	SacreBLEU (Post, 2018)
Gehring et al. (2017)	Convolutional Seq2Seq	216M	25.2	-
Vaswani et al. (2017)	Transformer	213M	28.4	-
Ahmed et al. (2017)	Weighted Transformer	213M	28.9	-
Chen et al. (2018)	RNMT+	379M	28.5	-
Shaw et al. (2018)	Relative Attention Transformer	213M	29.2	-
Ott et al. (2018)	Transformer	210M	29.3	28.6
Wu et al. (2019)	Dynamic Lightweight Convolution	213M	29.7	-
	Evolved Transformer	218M	29.8	29.2

• Generalizes to Other Tasks

TASK	Size	TRAN PERP	ET Perp	TRAN BLEU	ET BLEU
WMT'14 EN-FR WMT'14 En-Fr	Base Big	$\begin{array}{c} 3.61 \pm 0.01 \\ 3.26 \pm 0.01 \end{array}$	$\begin{array}{c} {\bf 3.42} \pm 0.01 \\ {\bf 3.13} \pm 0.01 \end{array}$	$\begin{array}{c} 40.0 \pm 0.1 \\ 41.2 \pm 0.1 \end{array}$	$\begin{array}{c} \textbf{40.6} \pm 0.1 \\ \textbf{41.3} \pm 0.1 \end{array}$
WMT'14 En-Cs WMT'14 En-Cs	Base Big	$\begin{array}{c} 4.98 \pm 0.04 \\ 4.43 \pm 0.01 \end{array}$	$\begin{array}{c} \textbf{4.42} \pm 0.01 \\ \textbf{4.38} \pm 0.03 \end{array}$	$\begin{array}{c} 27.0 \pm 0.1 \\ 28.1 \pm 0.1 \end{array}$	$\begin{array}{c} \textbf{27.6} \pm 0.2 \\ \textbf{28.2} \pm 0.1 \end{array}$
LM1B	BIG	30.44 ± 0.04	$\textbf{28.60} \pm 0.03$	-	-

Architecture Comparison

Conv 1x1 : 512 RELU Conv 1x1 : 2048 Layer Norm 8 Head Attend to Encoder : 512 Layer Norm 8 Head Self Attention : 512 Layer Norm Conv 1x1 : 512 RELU Conv 1x1 : 2048 Layer Norm 8 Head Attend to Encoder : 512 Layer Norm 8 Head Self Attention : 512 Layer Norm

Transformer

Architecture Comparison

Evolved Transformer

Architecture Comparison

Evolved Transformer

Summary

- First work applying NAS on feedforward sequence model.
- Discovered the Evolved Transformer, which shows better efficiency.
- Open sourced in Tensor2Tensor.

Scan to see the paper and code.

Poster: Pacific Ballroom 6:30 pm to 9:00 pm