Area Attention

Yang Li, Lukasz Kaiser, Samy Bengio, Si Si
Google Research

Google AI

Neural Attentional Mechanisms

$$
a_{i}=\frac{\exp \left(f_{a t t}\left(q, k_{i}\right)\right)}{\sum_{j=1}^{|M|} \exp \left(f_{a t t}\left(q, k_{j}\right)\right)}
$$

$$
O_{q}^{M}=\sum_{i=1}^{|M|} a_{i} v_{i}
$$

Neural Machine Translation

Bahdanau, Cho \& Bengio, ICLR'15 Luong, Pham, \& Manning, ACL'15

Image Captioning

Image Grid Cells
Xu, Ba, Kiros, Cho, Courville, Salakhutdinov, Zemel \& Bengio, ICML'15 Sharma, Ding, Goodman \& Soricut, ACL'18

Attention-Based Architectures

Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser \& Polosukhin, NIPS'17

Limitations

The unit of attention is predetermined rather than learned.

Image Grid Cell

Research Goal

Enable a model to attend to information at varying
granularity. The unit of attention emerges from learning.

1D Area Attention

2D Area Attention

Features of Each Area

Area Features

Mean
Sum
Max
Standard deviation
Area shape, e.g., 2×2

Area Attention consistently Improves upon Transformer \& LSTM

Area Attention

Yang Li, Lukasz Kaiser, Samy Bengio, Si Si Google Research

Poster session
Tue Jun 11th 06:30 - 09:00 PM @ Pacific Ballroom \#27

Source code

https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/layers/area_attention.py

Google AI

