Shallow-Deep Networks: Understanding and Mitigating Network Overthinking

Yiğitcan Kaya, Sanghyun Hong, Tudor Dumitraş

University of Maryland, College Park ICML 2019 - Long Beach, CA

We, *especially grad students*, often think more than needed to solve a problem.

We, *especially grad students*, often think more than needed to solve a problem.

i. Wastes our valuable energy (wasteful)

We, especially grad students, often think more than needed to solve a problem.

- i. Wastes our valuable energy (wasteful)
- ii. Causes us to make mistakes (destructive)

Without requiring the full depth, DNNs can correctly classify the majority of samples.

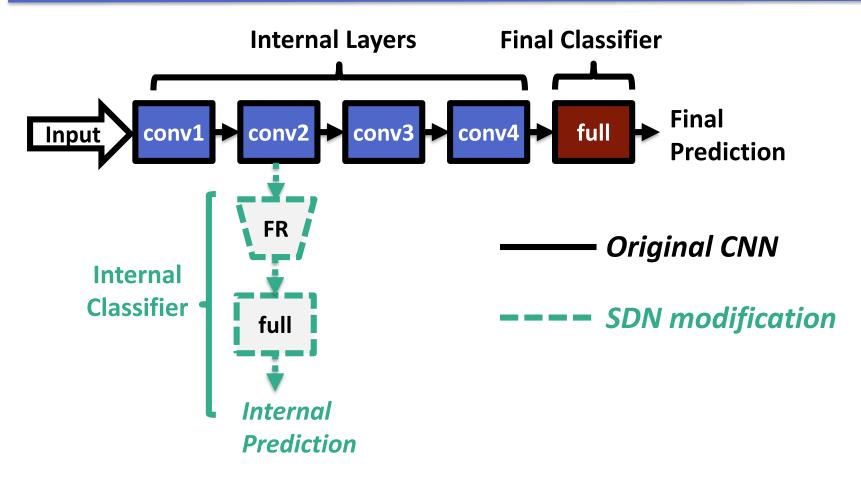
Experiments on four recent CNNs and three common image classification tasks

Without requiring the full depth, DNNs can correctly classify the majority of samples.

i. Wastes computation for up to **95%** of the samples (wasteful)

Without requiring the full depth, DNNs can correctly classify the majority of samples.

- Wastes computation for up to **95%** of the samples (wasteful)
- ii. Occurs in ~50% of all misclassifications (destructive)


Internal classifiers allow us to observe whether the DNN correctly classifies the sample at an earlier layer.

Internal classifiers allow us to observe whether the DNN correctly classifies the sample at an earlier layer.

Our generic Shallow-Deep Network (SDN) modification introduces internal classifiers to DNNs.

Applied to VGG, ResNet, WideResNet and MobileNet.

Challenge

How to train accurate internal classifiers?

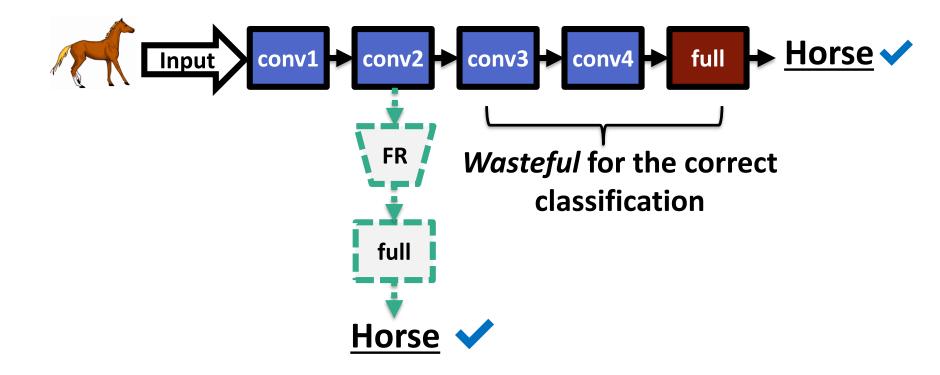
How to train accurate internal classifiers?

Prior Work

Claims this hurts the accuracy in *off-the-shelf* DNNs Proposes a *unique* architecture^[1]

[1] Huang, Gao, et al. "Multi-scale dense convolutional networks for efficient prediction." *ICLR 2018*

Challenge


How to train accurate internal classifiers?

<u>Results</u>

Our modification often *improves* the original accuracy by up to **10%**. (See our poster)

The wasteful effect of overthinking

The wasteful effect of overthinking

Challenge

How can we know where in the DNN to stop?

The wasteful effect of overthinking

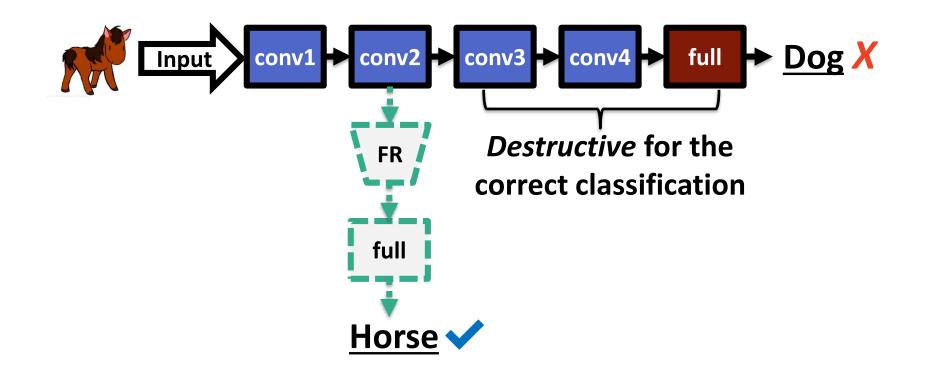
Challenge

How can we know where in the DNN to stop?

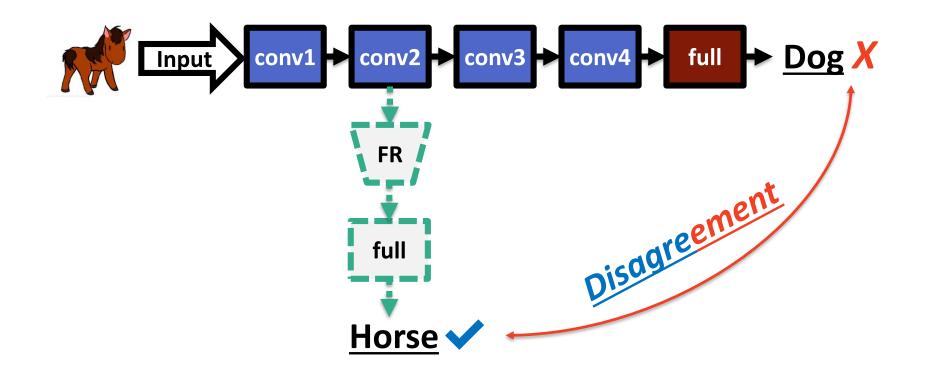
Our Solution

Classification confidence of the internal classifiers

Our Solution


Classification confidence of the internal classifiers

Results


A confidence-based early exit scheme reduces the average inference cost by up to **50%**. (See our poster)

The destructive effect of overthinking

Challenge

How can we quantify the internal disagreement?

Our Solution

The confusion metric

Our Solution

The confusion metric

Results

Confusion indicates *whether a misclassification is likely.* Confusion is a *reliable error indicator.* (See our poster)

Our Solution

The confusion metric

<u>Results</u>

Backdoor attacks^[2] also increase the confusion of the victim DNN for malicious samples. (See our poster)

[2] Gu, Tianyu, et al. "BadNets: Evaluating Backdooring Attacks on Deep Neural Networks." *IEEE Access* 7 (2019): 47230-47244.

- Eliminating overthinking would lead to *a significant boost* in accuracy and inference-time.
- We need DNNs that can *adjust their complexity* based on the required feature complexity.

For more details, visit our website http://shallowdeep.network

Thank you!

Don't overthink! Come and see our poster! <u>Pacific Ballroom – Poster #24 – 06:30-09:00 PM</u>

