BayesNAS: A Bayesian Approach for Neural Architecture Search

Hongpeng Zhou¹, Minghao Yang¹, Jun Wang², Wei Pan¹

Department of Cognitive Robotics, Delft University of Technology, Netherlands
 Department of Computer Science, University College London, UK
 Correspondence to: Wei Pan <wei.pan@tudelft.nl>

- What we achieve
- Why we study
- How to realize
- Experiment
- Conclusion and future work

- What we achieve
- Why we study
- How to realize
- Experiment
- Conclusion and future work

What?

What are the highlights of this paper?

• Fast:

Find the architecture on CIFAR-10 within only 0.2 GPU days using a single GPU.

• Simple:

Train the overparameterized network for only *one epoch* then update the architecture.

• First Bayesian method for one-shot NAS:

Apply Laplace approximation; Propose *fast Hessian calculation methods* for convolutional layers.

• Dependencies between nodes:

Model dependencies between nodes ensuring a connected derived graph.

- What we achieve
- Why we study
- How to realize
- Experiment
- Conclusion and future work

Why?

• Why use one shot method?

- Reduce search time without separate training, compared with reinforcement learning, neuroevolutionary approach;
- NAS is treated as Network Compression.

• Why employ Bayesian learning?

- It could prevent overfitting and does not require tuning a lot of hyperparameters;
- Hierarchical sparse priors can be used to model the architecture parameters;
- The priors can promote sparsity and model the dependency between nodes.

• Why apply Laplace approximation?

- Easy implementation;
- Close relationship between Hessian metric and network compression;
- Acceleration effect to training convergence by second order optimization algorithm.

[1] MacKay, D. J. A practical bayesian framework for backpropagation networks. Neural computation, 4(3):448–472, 1992b.
 [2] LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain damage. In Advances in neural information processing systems, pp. 598–605, 1990.
 [3] Botev, A., Ritter, H., and Barber, D. Practical gauss-newton optimisation for deep learning. ICML, 2017.

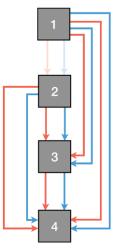
Why?

• Why consider dependency?

• Most current one-shot methods disregard the dependencies between a node and its predecessors and successors, which may results in a disconnected graph.

• Example:

If node 2 is redundant, the expected graph has no connection from node 2 to 3 and from node 2 to 4.



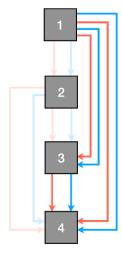


Figure1. Disconnected graph caused by disregard for dependency

Figure2: Expected connected graph

- What we achieve
- Why we study
- How to realize
- Experiment
- Conclusion and future work

How?

• How to realize dependency?

A **multi-input-multi-output motif** is abstract the building block of any Directed Acyclic Graph (DAG). Any path or network can be constructed by this motif, as shown in Figure 4.(c).

Proposition for Dependency: there is information flow from node j to k if and only if at least one operation of at least one predecessor of node j is non-zero and w_{jk}^o is also nonzero.

Specific explanation:

- Figure3(a): predecessor's (e₁₂) has superior control over its successors (e₂₃ and e₂₄);
- Figure3(b): design switches s₁₂, s₂₃ and s₂₄ to determine "on or off" of the edge;
- Figure3(d): prioritize zero operation over other non-zero operations by adding one more node i' between node i and j.

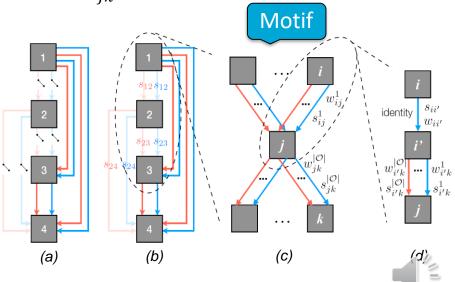


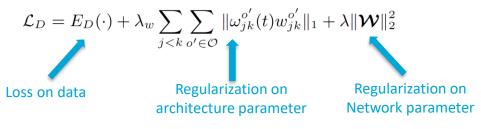
Figure3. An illustration for dependency.

How?

- How to apply Bayesian learning search strategy?
- Model architecture parameters with hierarchical automatic relevance determination (HARD) priors.

$$p(\mathbf{w} | \mathbf{s}) = \prod_{j < k} \prod_{o \in \mathcal{O}} \prod_{o' \in \mathcal{O}} \mathcal{N}\left(w_{jk}^{o'} \sum_{i < j} w_{ij}^{o} | 0, \gamma_{jk}^{o'}\right)$$

 The cost function is maximum likelihood over the data D with regularization whose intensity is controlled by the reweighted coefficient ω:



- How to compute the Hessian?
- By converting convolutional layers to fully-connected layers, a recursive and efficient method is
 proposed to compute the Hessian of convolutional layers and architecture parameter.

Byproduct:

• Extension to Network Compression

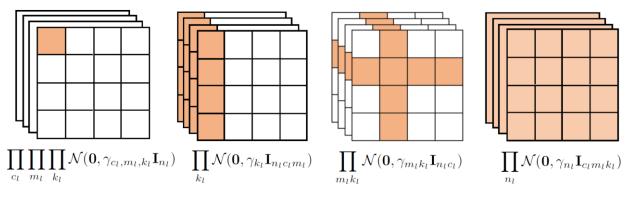


Figure 4. Structure sparsity

- By enforcing various structural sparsity, extremely sparse models can be obtained without accuracy loss.
- This can be effortlessly integrated into BayesNAS to find sparse architecture for resource-limited hardware.

- What we achieve
- Why we study
- How to realize
- Experiment
- Conclusion and future work

Experiment:

- CIFAR10-experiment setting:
- The setup for proxy tasks follows DARTS and SNAS;
- The backbone for proxyless search is PyramidNet;
- Apply BayesNAS to search the best convolutional cells/optimal paths in a complete network;
- A network constructed by stacking learned cells/paths is retrained.

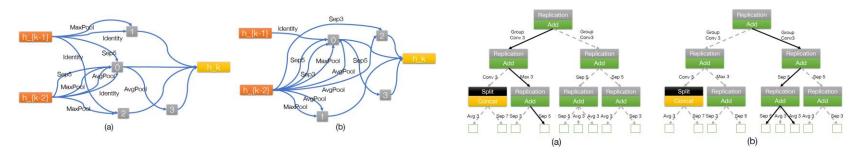


Figure 5. Normal and reduction cell found in proxy task

Figure 6. Tree cells found in proxyless task

[4] Liu, H., Simonyan, K., and Yang, Y. DARTS: Differentiable architecture search. ICLR, 2019b.
[5] Xie, S., Zheng, H., Liu, C., and Lin, L. SNAS: stochastic neural architecture search. ICLR, 2019.
[6] Cai, H., Zhu, L., and Han, S. ProxylessNAS: Direct neural architecture search on target task and hardware. ICLR, 2019.
[7] Cai, H., Yang, J., Zhang, W., Han, S., and Yu, Y. Path-level network transformation for efficient architecture search. ICML, 2018.

Experiment:

• CIFAR10-result:

Architecture	Test Error (%)	Params (M)	Search Cost (GPU days)	Search Method
DenseNet-BC (Huang et al., 2017)	3.46	25.6	-	manual
NASNet-A + cutout (Zoph et al., 2018)	2.65	3.3	1800	RL
AmoebaNet-B + cutout (Real et al., 2019)	2.55 ± 0.05	2.8	3150	evolution
Hierarchical Evo (Liu et al., 2018b)	3.75 ± 0.12	15.7	300	evolution
PNAS (Liu et al., 2018a)	3.41 ± 0.09	3.2	225	SMBO
ENAS + cutout (Pham et al., 2018)	2.89	4.6	0.5	RL
Random search baseline + cutout (Liu et al., 2019b)	3.29 ± 0.15	3.2	1	random
DARTS (2nd order bi-level) + cutout (Liu et al., 2019b)	2.76 ± 0.09	3.4	1	gradient
SNAS (single-level) + moderate con + cutout (Xie et al., 2019)	2.85 ± 0.02	2.8	1.5	gradient
DSO-NAS-share+cutout (Zhang et al., 2019b)	2.84 ± 0.07	3.0	1	gradient
Proxyless-G + cutout (Cai et al., 2019)	2.08	5.7	Ó	gradient
BayesNAS + cutout + $\lambda_w^o = 0.01$	3.02 ± 0.04	2.59±0.23	0.2	gradient
BayesNAS + cutout + $\lambda_w^{o} = 0.007$	$2.90 {\pm} 0.05$	$3.10{\pm}0.15$	0.2	gradient
BayesNAS + cutout + $\lambda_w^{o} = 0.005$	$2.81 {\pm} 0.04$	$3.40 {\pm} 0.62$	0.2	gradient
BayesNAS + TreeCell-A + Pyrimaid backbone + cutout	2.41	3.4	0.1	gradient

Table 1. Classification errors of BayesNAS and state-of-the-art image classifiers on CIFAR-10.

- Competitive test error rate against state-of-the-art techniques.
- Significant drop in search time.

less search time

Experiment:

• Transferability to ImageNet :

A network of 14 cells is trained for 250 epochs with batch size 128:

Architecture	Test En top-1	top-5	Params (M)	Search Cost (GPU days)	Search Method
Inception-v1 (Szegedy et al., 2015)	30.2	10.1	6.6	_	manual
MobileNet (Howard et al., 2017)	29.4	10.5	4.2	_	manual
ShuffleNet $2 \times (v1)$ (Zhang et al., 2018)	29.1	10.2	${\sim}5$	_	manual
ShuffleNet $2 \times (v2)$ (Zhang et al., 2018)	26.3	_	${\sim}5$	_	manual
NASNet-A (Zoph et al., 2018)	26.0	8.4	5.3	1800	RL
NASNet-B (Zoph et al., 2018)	27.2	8.7	5.3	1800	RL
NASNet-C (Zoph et al., 2018)	27.5	9.0	4.9	1800	RL
AmoebaNet-A (Real et al., 2019)	25.5	8.0	5.1	3150	evolution
AmoebaNet-B (Real et al., 2019)	26.0	8.5	5.3	3150	evolution
AmoebaNet-C (Real et al., 2019)	24.3	7.6	6.4	3150	evolution
PNAS (Liu et al., 2018a)	25.8	8.1	5.1	~ 225	SMBO
DARTS (Liu et al., 2019b)	26.9	9.0	4.9	4	gradient
BayesNAS ($\lambda_w^o = 0.01$)	28.1	9.4	4.0	0.2	gradient
BayesNAS ($\lambda_w^o = 0.007$)	27.3	8.4	3.3	0.2	gradient
BayesNAS ($\lambda_w^o = 0.005$)	26.5	8.9	3.9	0.2	gradient

Table 2. Comparison with state-of-the-art image classifiers on ImageNet in the mobile setting.

- What we achieve
- Why we study
- How to realize
- Experiment
- Conclusion and future work

Conclusion and future work:

- First Bayesian approach for one-shot NAS: BayesNAS can prevent overfitting, promote sparsity and model dependencies between nodes ensuring a connected derived graph.
- Simple and fast search: BayesNAS is an iteratively re-weighted 11 type algorithm. Fast Hessian calculation methods are proposed to accelerate the computation. Only one epoch is required to update hyper-parameters.
- Our current implementation is still inefficient by caching all the feature maps in memory. The searching time could be future reduced by computing Hessian with backpropagation.

Thank you!

Paper: 3866 Contact: Wei Pan <wei.pan@tudelft.nl>

