Graph Matching Networks for Learning the Similarity of Graph Structured Objects

Yujia Li, Chenjie Gu, Thomas Dullien*, Oriol Vinyals, Pushmeet Kohli

Graph structured data appear in many applications

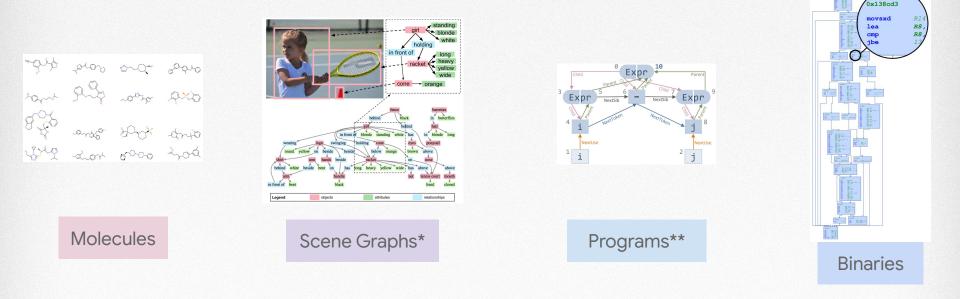


Image credit: *Johnson et al. Image Retrieval using Scene Graphs. **Brockschmidt et al. Generative Code Modeling with Graphs

Graph structured data appear in many applications

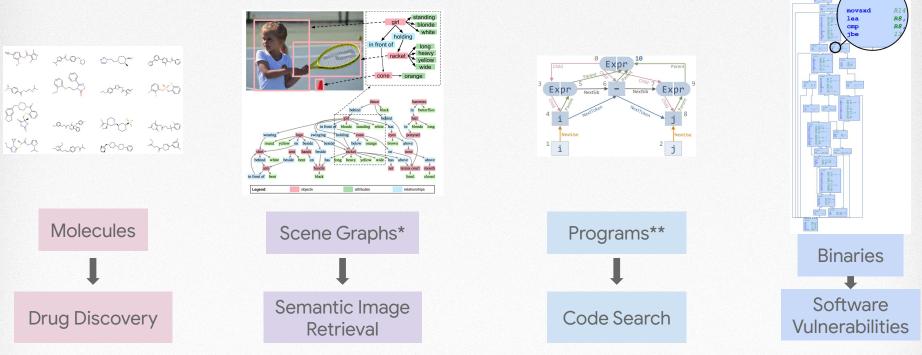
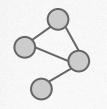


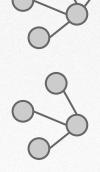
Image credit: *Johnson et al. Image Retrieval using Scene Graphs. **Brockschmidt et al. Generative Code Modeling with Graphs

0x138cd3

Finding similar graphs



Query Graph



5

Candidate Graphs

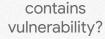
Graph structures vary a lot

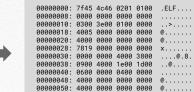
Nodes and edges can have attributes

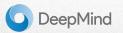
Reasoning about both the graph **structure** and the **semantics**

The notion of "similarity" varies across problems

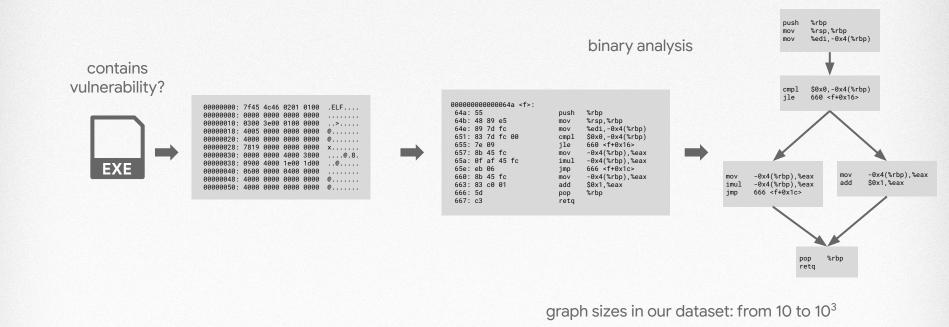
The binary function similarity search problem



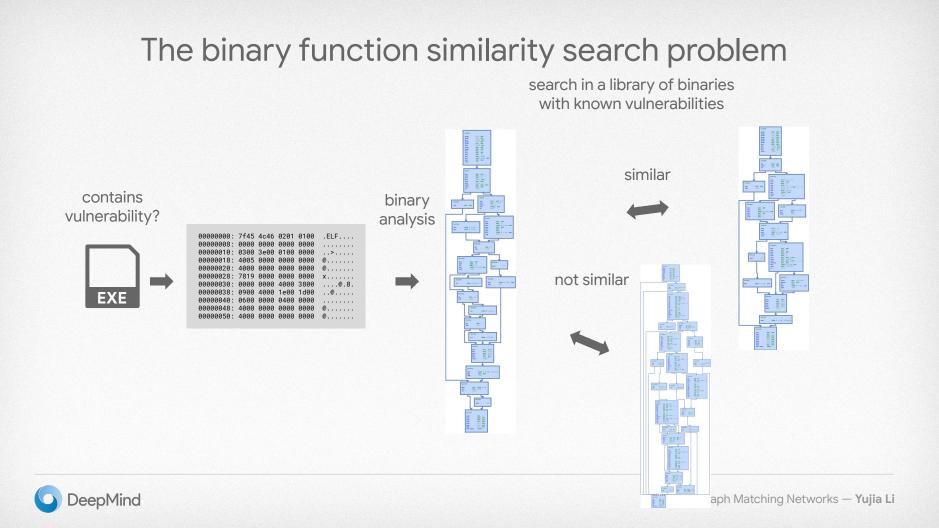




The binary function similarity search problem



DeepMind



The binary function similarity search problem search in a library of binaries with known vulnerabilities lea R121 lea RAX test similar [RBX mov contains binary vulnerability? analysis 00000000: 7f45 4c46 0201 0100 .ELF.... 00000008 0000 0000 0000 0000 00000010: 0300 3e00 0100 0000 ..>.... 00000018: 4005 0000 0000 0000 @.... 4000 0000 0000 0000 00000020: @.... 7819 0000 0000 0000 not similar 00000028 x.... 0000 0000 4000 3800@.8. EXE 0000038: 0900 4000 1e00 1d00 00000040: 0600 0000 0400 0000 00000048: 4000 0000 0000 0000 @..... 00000050: 4000 0000 0000 0000 @..... E Barro DeepMind aph Matching Networks — Yujia Li

Most existing approaches

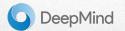
Mostly hand-engineered algorithms / heuristics with limited learning:

Graph hashes (graph -> descriptor): widely used in security applications

- human-designed hash functions that encode graph structure
- good at exact matches, not so good at estimating similarity

Graph kernels (pair of graphs → similarity): popular in various graph-level prediction tasks

- human-designed kernels as a measure of similarity between graphs
- the design of kernels is important for performance



Different graph similarity estimation paradigms

Graph embedding

 $Graph \rightarrow descriptor$

Measure distance on descriptors

Fast hashing based retrieval

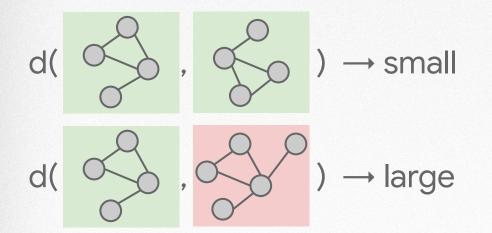
Graph matching

Compute distance jointly on the pair of graphs

More computation for **better accuracy**

Graph similarity learning

Learn a similarity (or distance) function





Graph similarity learning

Learn a similarity (or distance) function

d(
$$\swarrow$$
, \checkmark) \rightarrow small
d(\checkmark , \checkmark) \rightarrow large

Supervised learning on labeled **pairs** or **triplets**

 $L_{\text{pair}} = \mathbb{E}_{(G_1, G_2, t)}[\max\{0, \gamma - t(1 - d(G_1, G_2))\}]$ $t = +1 \Rightarrow G_1, G_2 \text{ similar} \Rightarrow d(G_1, G_2) \searrow$ $t = -1 \Rightarrow G_1, G_2 \text{ not similar} \Rightarrow d(G_1, G_2) \nearrow$

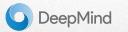
 $L_{\text{triplet}} = \mathbb{E}_{(G_1, G_2, G_3)}[\max\{0, d(G_1, G_2) - d(G_1, G_3) + \gamma\}]$

 G_1, G_2 similar, G_1, G_3 not similar $\Rightarrow d(G_1, G_2) \searrow d(G_1, G_3) \nearrow$



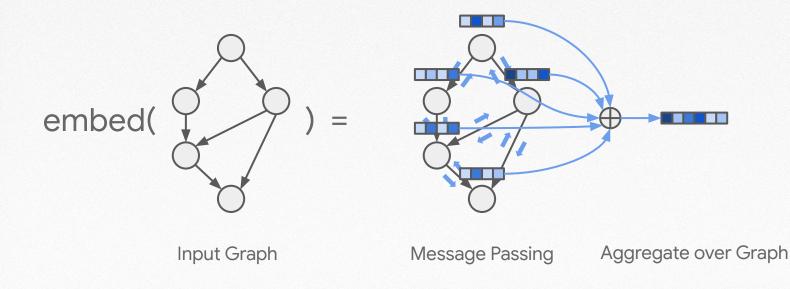
Learning graph embeddings with Graph Neural Nets

 $d(G_1, G_2) = Euclidean/Hamming distance(embed(G_1), embed(G_2))$

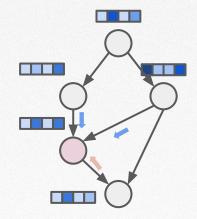


Learning graph embeddings with Graph Neural Nets

 $d(G_1, G_2) = Euclidean/Hamming distance(embed(G_1), embed(G_2))$



Graph embedding model details



Messages:
$$\mathbf{m}_{u \to v} = f_{\text{message}}(\mathbf{h}_u^{(t)}, \mathbf{h}_v^{(t)}, \mathbf{e}_{uv})$$
Node updates: $\mathbf{h}_v^{(t+1)} = f_{\text{node}}\left(\mathbf{h}_v^{(t)}, \sum_{u \in N(v)} \mathbf{m}_{u \to v}\right)$

 $\mathbf{h}_G = \mathrm{MLP}\left(\mathrm{POOL}(\{\mathbf{h}_v\}_{v \in V})\right)$

Aggregation: sum pooling, attention pooling etc.

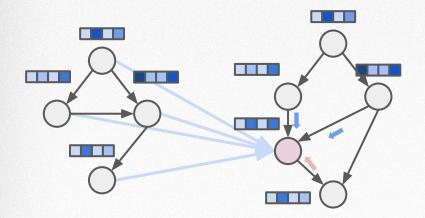
Graph Matching Networks

 $h_1, h_2 =$ embed-and-match(G_1, G_2) d(G_1, G_2) = Euclidean/Hamming distance(h_1, h_2)



Graph Matching Networks

 $h_1, h_2 =$ embed-and-match(G_1, G_2) d(G_1, G_2) = Euclidean/Hamming distance(h_1, h_2)



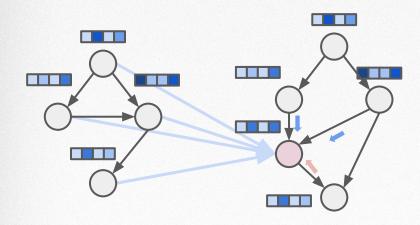
Attention: Weighted

difference:
$$\mu_{j-}$$

$$a_{j \to i} = \text{Softmax}_j \left(s(\mathbf{h}_i^{(t)}, \mathbf{h}_j^{(t)}) \right)$$
$$\boldsymbol{\mu}_{j \to i} = a_{j \to i} (\mathbf{h}_i^{(t)} - \mathbf{h}_j^{(t)})$$

Graph Matching Networks

 $h_1, h_2 =$ embed-and-match(G_1, G_2) d(G_1, G_2) = Euclidean/Hamming distance(h_1, h_2)

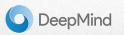


Total cross-graph message

$$\sum_{j} \boldsymbol{\mu}_{j \to i} = \sum_{j} a_{j \to i} (\mathbf{h}_{i}^{(t)} - \mathbf{h}_{j}^{(t)}) = \mathbf{h}_{i}^{(t)} - \sum_{j} a_{j \to i} \mathbf{h}_{j}^{(t)}$$

Effectively: match node i to the closest node in the other graph and take the difference.

$$\mathbf{h}_{i}^{(t+1)} = f_{\text{node}}\left(\mathbf{h}_{i}^{(t)}, \sum_{j} \mathbf{m}_{j \to i}, \sum_{j'} \boldsymbol{\mu}_{j' \to i}\right)$$



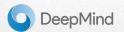
Other variants

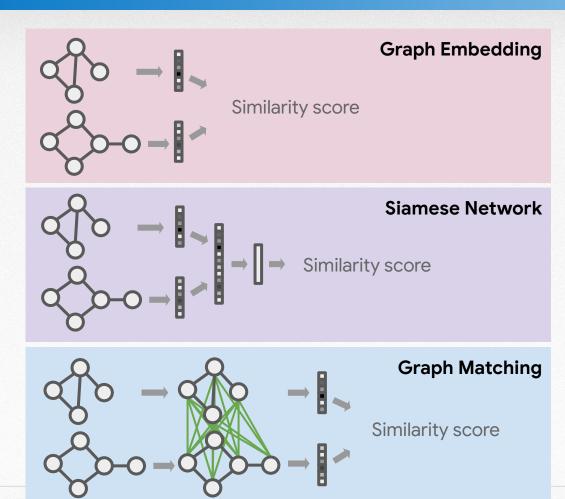
Other variants of GNNs for embedding:

- e.g. Graph Convolutional Networks (GCNs), which is a simpler variant without modeling edge features

Siamese networks:

- instead of using Euclidean or Hamming distance, learn a distance score through a neural net
- $d(G_1, G_2) = MLP(concat(embed(G_1), embed(G_2)))$
- learn the embedding model and the scoring MLP jointly







Graph Matching Networks - Yujia Li

Experiments

Graph edit distance learning

Data: synthetic graphs

Similarity: small edit distance \rightarrow similar

Control-flow graph based binary function similarity search

Data: compile **ffmpeg** with **different compilers** and **optimization levels**.

Similarity: binary functions associated with the same original function → similar Mesh graph retrieval

Data: mesh graphs for 100 object classes (COIL-DEL dataset)

Similarity: mesh for the same object class → similar

Synthetic task: graph edit distance learning

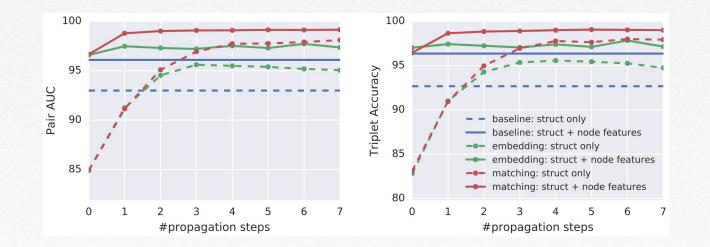
Training and evaluating on graphs of size n, and edge density (probability) p Measuring **pair classification AUC** / **triplet prediction accuracy**.

Graph Spec.	WL kernel	embedding model	matching model
n = 20, p = 0.2	80.8 / 83.2	88.8 / 94.0	95.0 / 95.6
n = 20, p = 0.5	74.5 / 78.0	92.1 / 93.4	96.6 / 98.0
n = 50, p = 0.2	93.9 / 97.8	95.9 / 97.2	97.4 / 97.6
n = 50, p = 0.5	82.3 / 89.0	88.5 / 91.0	93.8 / 92.6

Learned models do better than WL kernel.

Matching model better than embedding model.

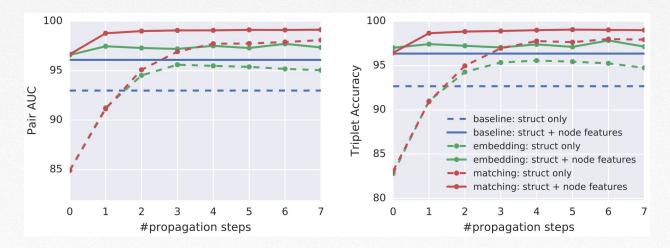
Results on binary function similarity search



Hand-engineered baseline (graph hashing + locality sensitive hashing) vs GNN embedding vs GMN.

Graph topology only vs jointly over structures and features.

Results on binary function similarity search



- 1) learned approaches better than hand-engineered solution
- 2) matching better than embedding alone
- 3) joint modeling of structure and features better than structure alone
- 4) performance better with more graph propagation steps



More ablation studies

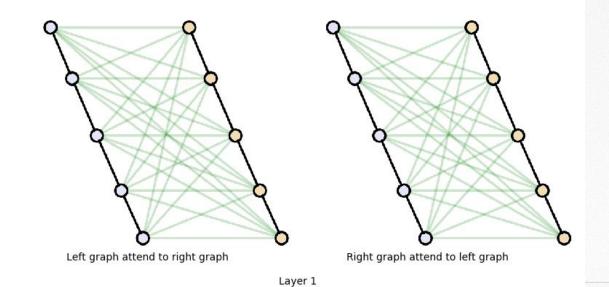
Model	Pair AUC	Triplet Acc	Mod		Pair AUC	Triplet Acc
Baseline	96.09	96.35	GC	1.1.1.1.1.1	<u>94.80</u>	94.95
GCN	96.67	96.57	Siamese-GC		94.80 95.90	94.95 96.10
Siamese-GCN	97.54	97.51	GN		95.90 98.58	90.10 98.70
GNN	97.71	97.83	Siamese-GN		98.38 98.76	98.70 98.55
Siamese-GNN	97.76	97.58	GM GM	1000	98.10 98.97	98.30 98.80
GMN	99.28	99.18	GM.		90.91	90.00
Function Similarity Search			COIL-DEL			

GMNs consistently better than alternatives.

Siamese vs matching: fusing two graphs early better than only at the end.

Learned attention patterns

We never supervise the cross-graph attention, but the model still learns some interesting attention patterns.



Learned attention patterns

When the two graphs are identical, the learned attention pattern may (not always) correspond to node matching.

Model trained on the edit distance learning task.

Learned attention patterns

Otherwise the attention pattern is less interpretable.

Model trained on the edit distance learning task.

Conclusions and future directions

Takeaways:

- graph similarity can be learned.
- learned graph embedding models are good and efficient models for this.
- graph matching networks are even better.

Future directions:

- make cross-graph attention and matching more efficient
- explore new architectures that can utilize the new capability of learned graph similarity



Graph Matching Networks for Learning the Similarity of Graph Structured Objects

Yujia Li, Chenjie Gu, Thomas Dullien*, Oriol Vinyals, Pushmeet Kohli

