Thirty-sixth International Conference on Machine Learning

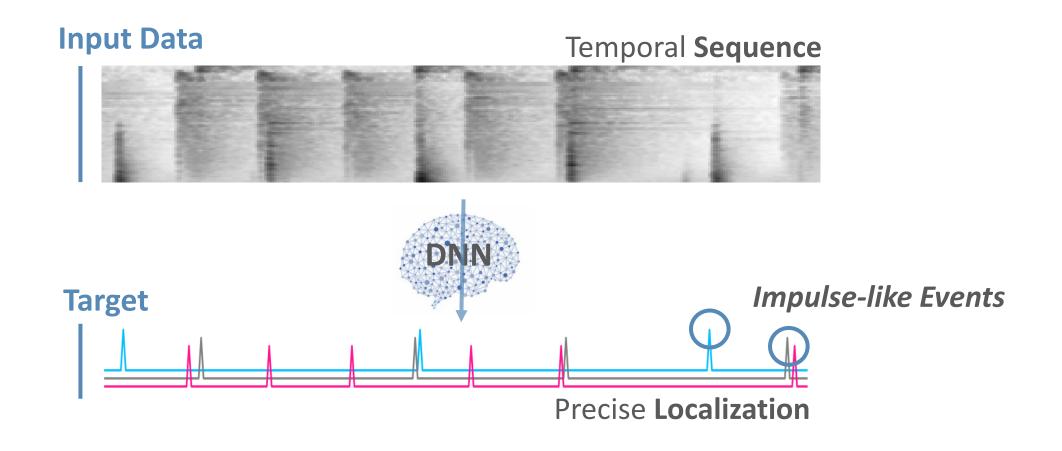
Weakly-Supervised Temporal Localization via Occurrence Count Learning

Julien Schroeter schroeterj1@cardiff.ac.uk

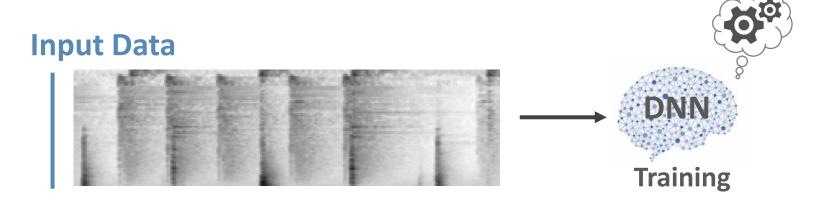
Dr Kirill Sidorov

Prof David Marshall

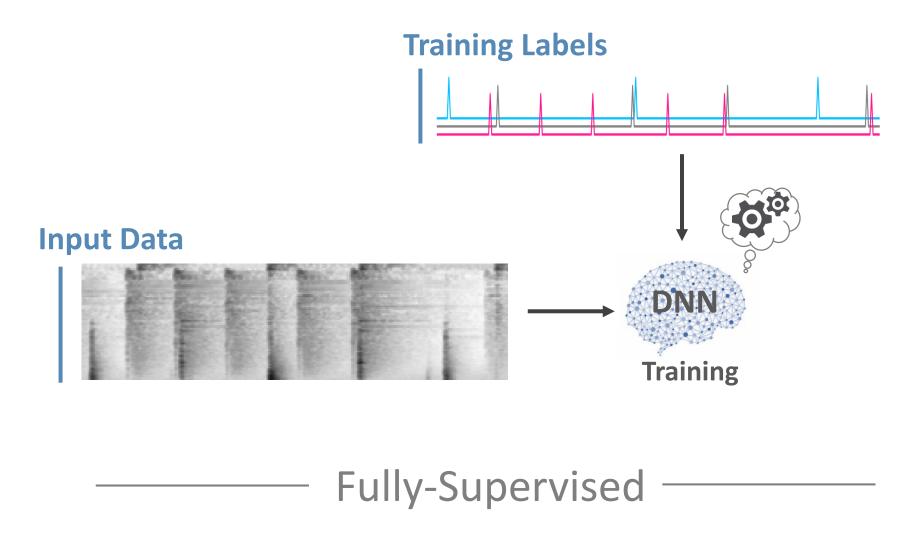
Input Data Temporal Sequence



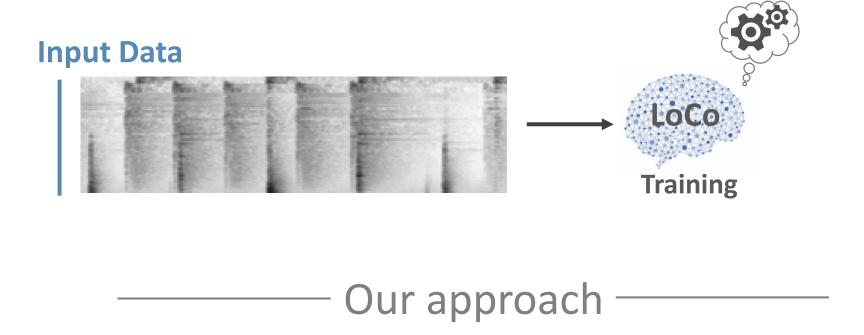
Fully-Supervised

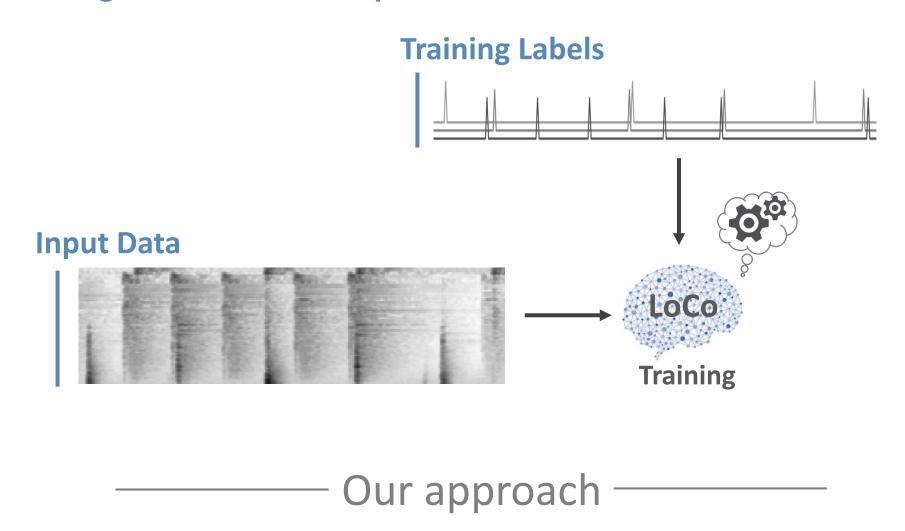


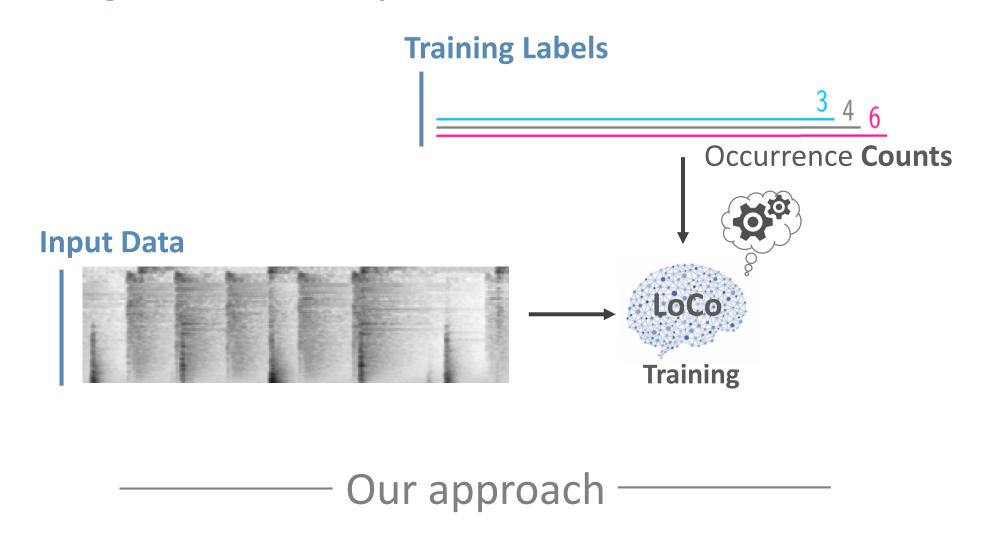
Fully-Supervised

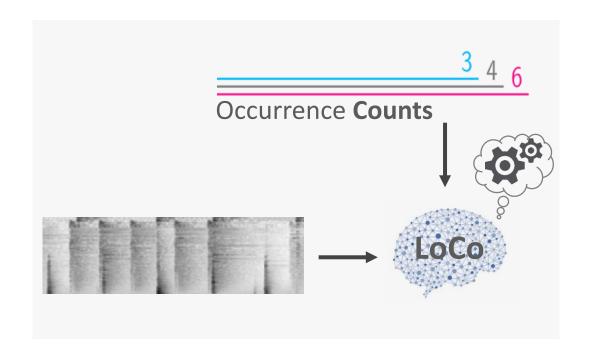


Our approach



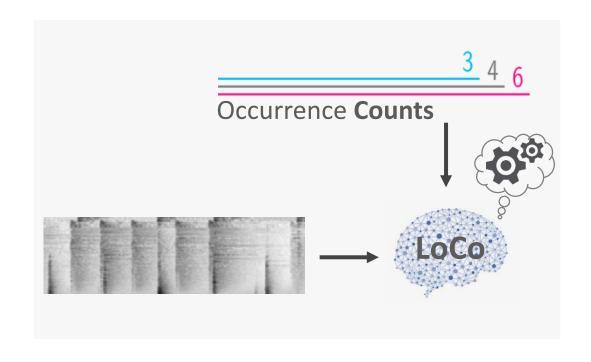


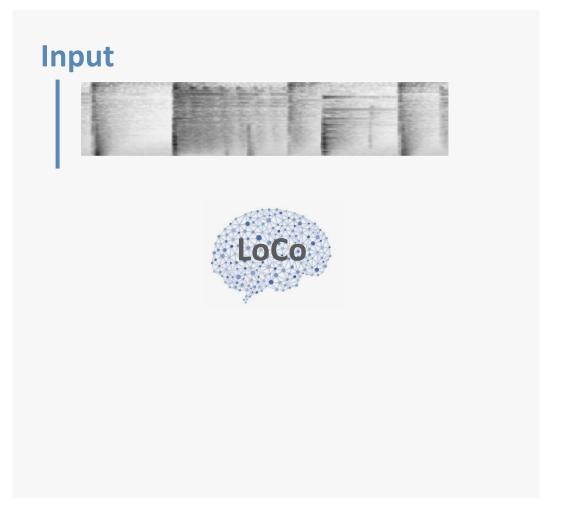




Training

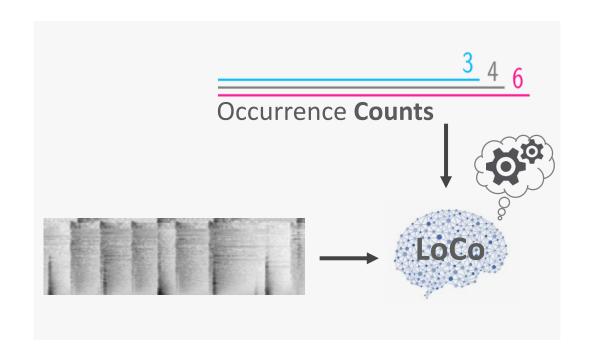
Inference -

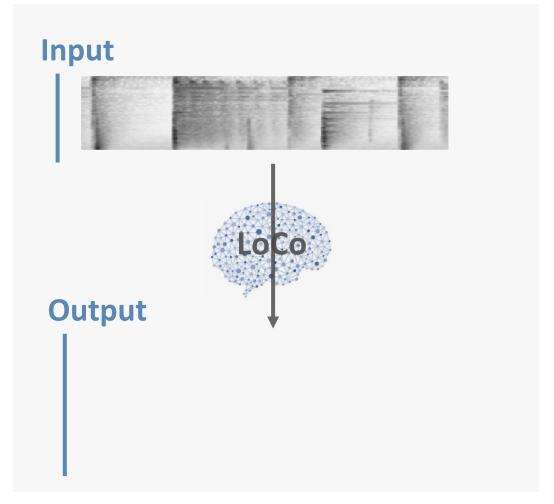




Training

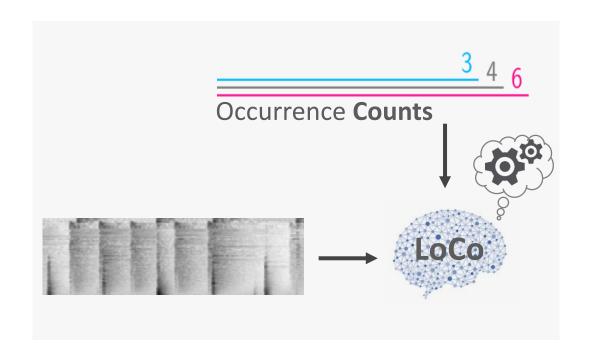
Inference

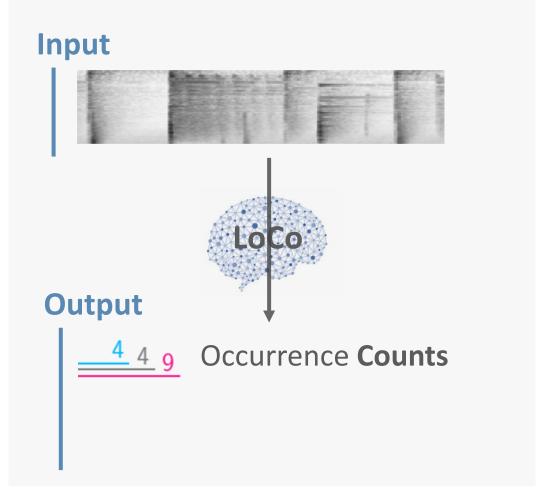




Training

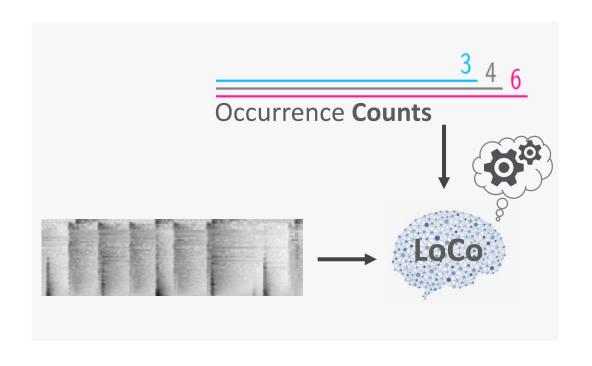
Inference

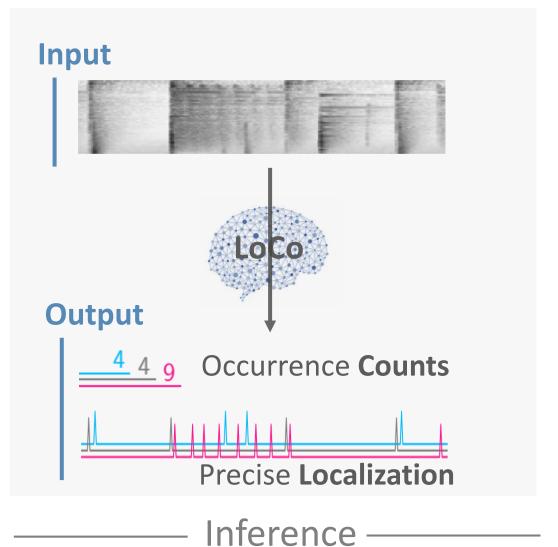


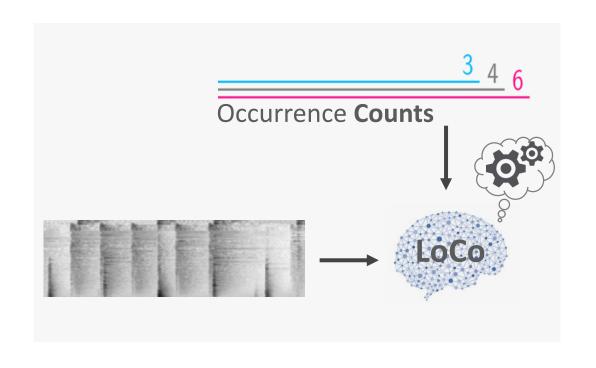


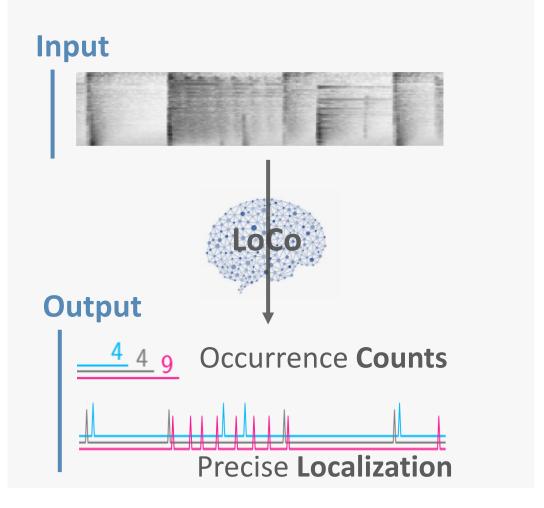
Training

Inference







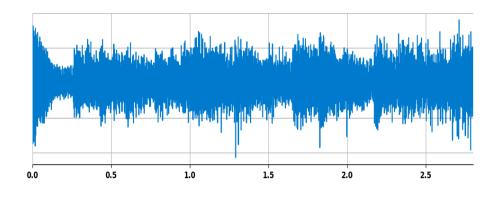


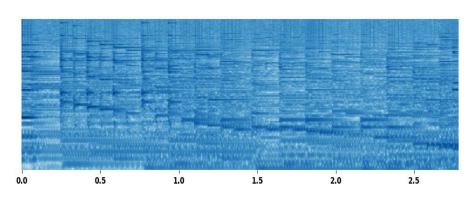
Training

Inference

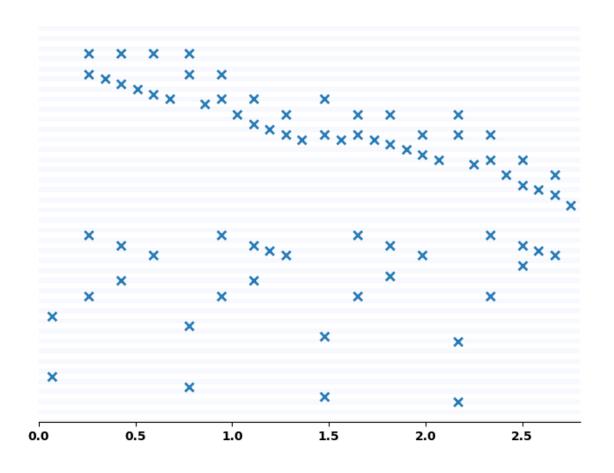
Weakly-Supervised

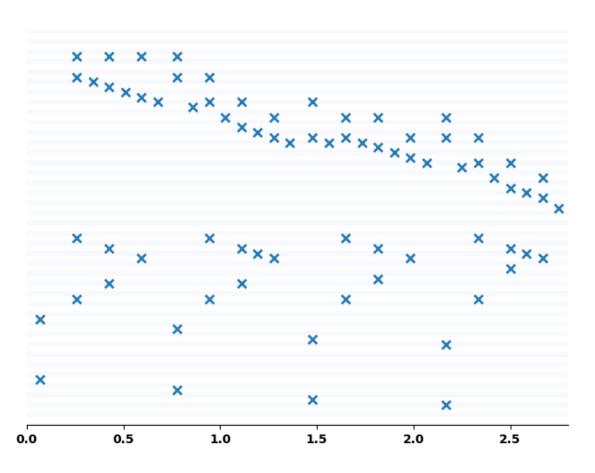
Is it useful?



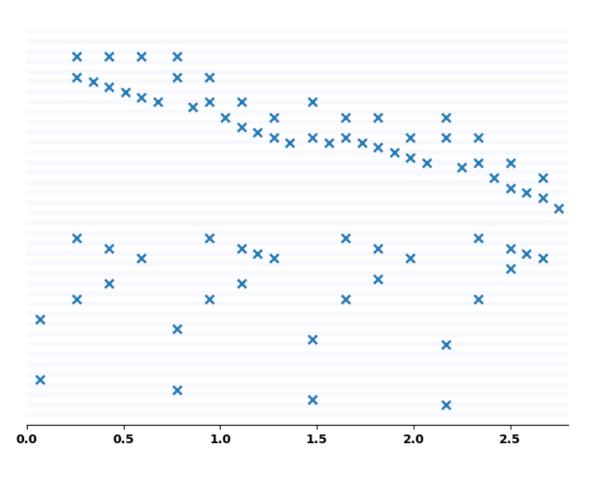


Label Piano Music

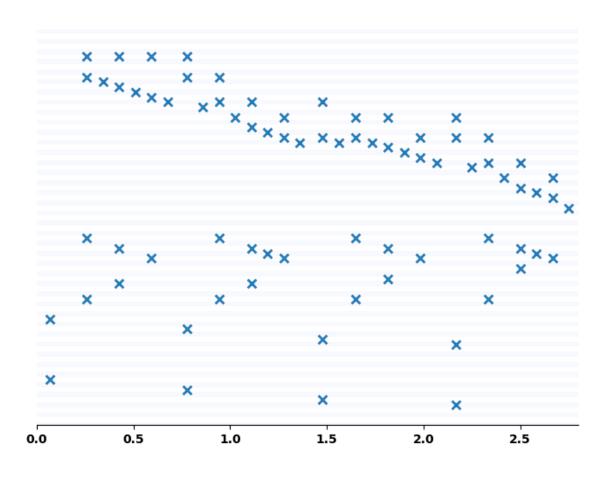


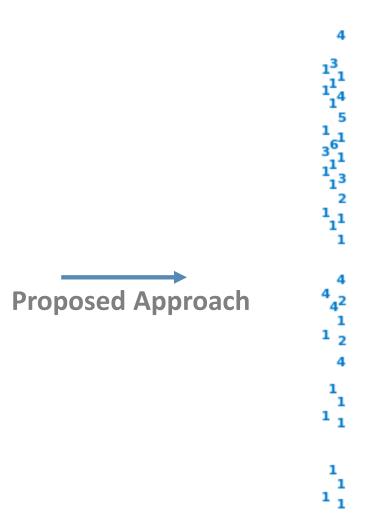


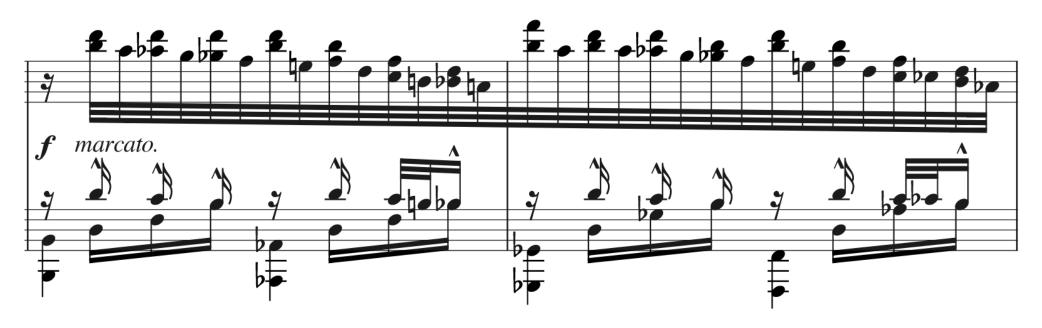
➤ Precise hand-labeling is very **tedious**

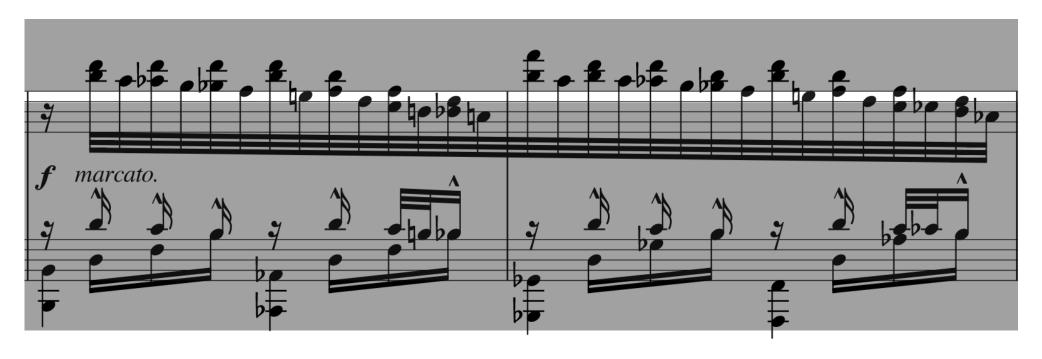


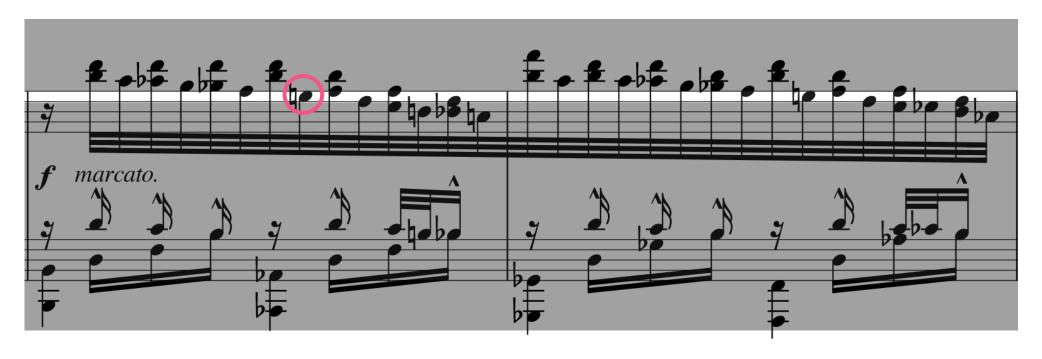
- ➤ Precise hand-labeling is very **tedious**
- **★** Prone to labeling **inaccuracy**

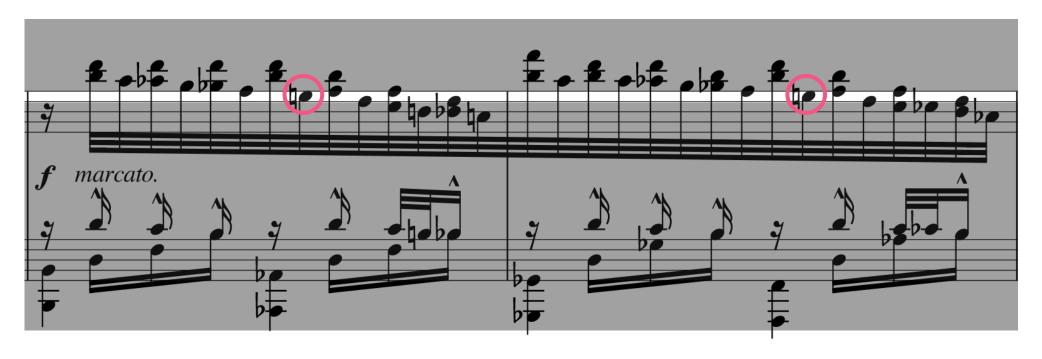


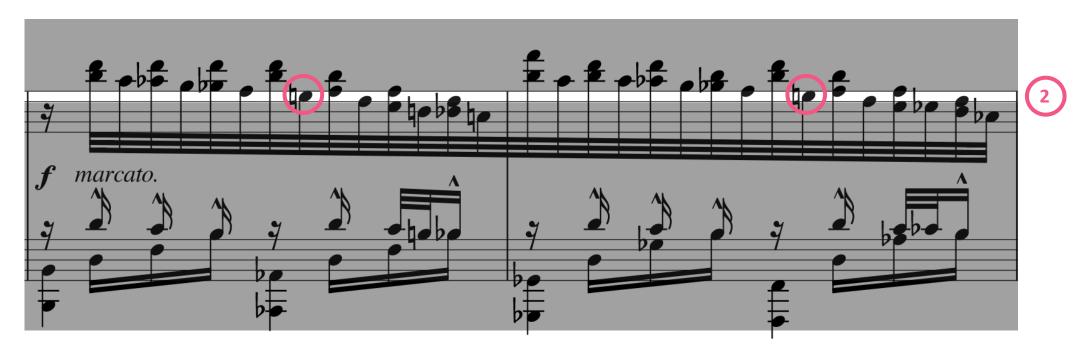








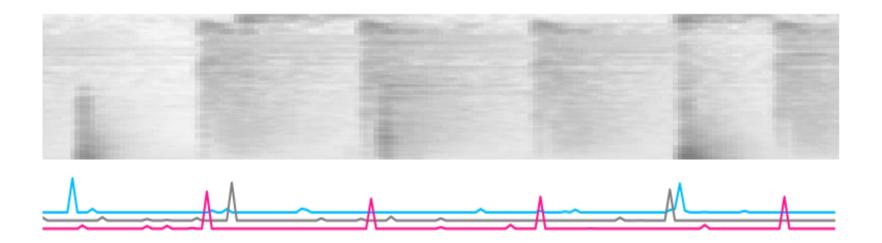




The Model

Unlike existing methods, in which localization is explicitly achieved by design, our model learns localization implicitly as a byproduct of learning to count instances.

$$p_i\left(t
ight) = f\left(\left(\mathbf{x}_i(n)
ight)_{n=1}^t\right)$$
 Probability of Event occurrence



$$p_i\left(t
ight) = f\left(\left(\mathbf{x}_i(n)\right)_{n=1}^t\right)$$
 $E_i\left(t
ight) = \mathfrak{B}\left(p_i(t)\right)$, ind. Bernoulli Event occurrence

$$p_i\left(t
ight) = f\left(\left(\mathbf{x}_i(n)\right)_{n=1}^t
ight)$$
 $E_i\left(t
ight) = \mathfrak{B}\left(p_i(t)
ight)$, ind. Bernoulli
 $Y_i = \sum_t E_i(t)$

$$p_i\left(t
ight) = f\left(egin{array}{c} \mathbf{x}_i(n) \end{pmatrix}_{n=1}^t
ight) \ E_i\left(t
ight) = \mathfrak{B}\left(p_i(t)
ight), ext{ ind. Bernoulli} \ Y_i = \sum_t E_i(t)
ight.$$

$$p_i\left(t
ight) = f\left(\left(\mathbf{x}_i(n)
ight)_{n=1}^t
ight)$$
 $E_i\left(t
ight) = \mathfrak{B}\left(p_i(t)
ight)$, ind. Bernoulli $Y_i = \sum_t E_i(t)$ Occurrence t

$$p_i\left(t
ight) = f\left(\left(\mathbf{x}_i(n)
ight)_{n=1}^t
ight)$$
 $E_i\left(t
ight) = \mathfrak{B}\left(p_i(t)
ight)$, ind. Bernoulli $Y_i = \sum_{t} E_i(t)$

MODEL Counting Occurrences

Estimated through RNN (e.g. LSTM)
Input Data

$$p_i(t) = f\left(\left(\mathbf{x}_i(n)\right)_{n=1}^t\right)$$

$$E_i(t) = \mathfrak{B}(p_i(t))$$
, ind. Bernoulli

$$Y_i = \sum E_i(t)$$

Occurrence t
Count

MODEL Loss

$$Y_i = \sum_t E_i(t)$$
Occurrence t
Count

$$Y_i = \sum_t E_i(t)$$
Occurrence t
Count

MODEL Loss

$$Y_i = \sum_t E_i(t)$$
Occurrence t
Count

$$L(\theta) = -\sum \log \left(\Pr\left(Y_{i,\theta} = y_i \mid \mathbf{X}_i \right) \right)$$

MODEL Loss

$$Y_i = \sum_t E_i(t)$$
Occurrence t
Count

$$L(\theta) = -\sum \log \left(\Pr\left(Y_{i,\theta} = y_i \mid \mathbf{X}_i \right) \right)$$

MODEL Loss

$$Y_i = \sum_{t} E_i(t)$$
Occurrence t
Count

$$L(heta) = -\sum \log \left(\Pr\left(Y_i, heta = y_i \mid \mathbf{X}_i \right) \right)$$

$$L(heta) = -\log \left(\begin{array}{c} Observed \textit{Count} \\ \mathbf{X}_i \end{array} \right) - \log \left(\begin{array}{c} Observed \textit{Count} \\ \mathbf{X}_i \end{array} \right).$$

MODEL Loss

$$Y_i = \sum_t E_i(t)$$
Occurrence t
Count

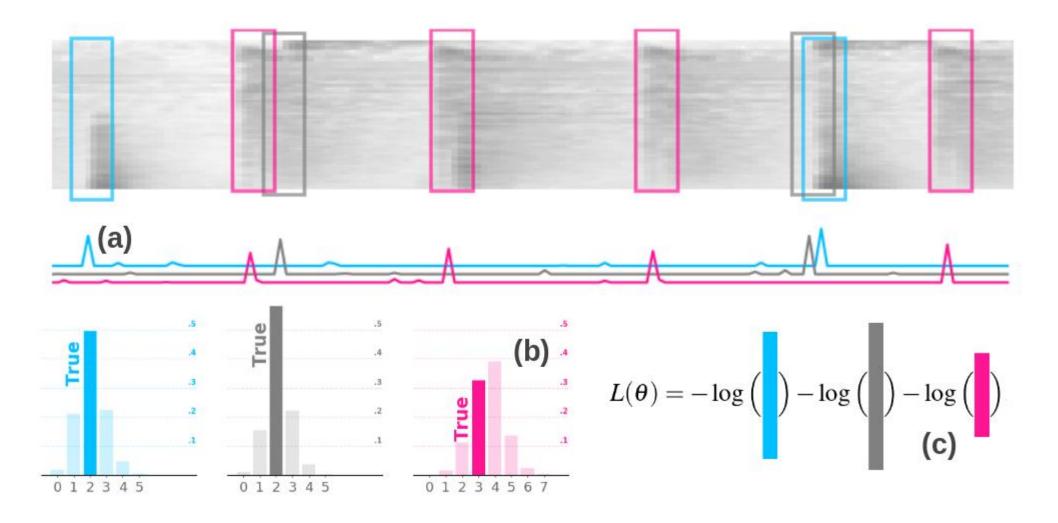
Compare them to true observed counts.

$$L(\theta) = -\sum \log \left(\Pr\left(Y_{i,\theta} = y_i \mid \mathbf{X}_i \right) \right)$$

Optimized with standard backpropagation

$$L(\theta) = -\log\left(\begin{array}{c} \\ \end{array}\right) - \log\left(\begin{array}{c} \\ \end{array}\right) - \log\left(\begin{array}{c} \\ \end{array}\right).$$

MODEL Full Pipeline



Why does it work?

MODEL Poisson Binomial Counts

$$\Pr(Y_{i,\theta} = k \mid \mathbf{X}_i) = \sum_{A \in F_k} \prod_{l \in A} \hat{p}_{i,\theta}(l) \prod_{j \in A^c} (1 - \hat{p}_{i,\theta}(j)),$$

Y follows a Poisson-binomial distribution

$$\Upsilon_i(k,t) := \Pr(Y_{i,\theta}(t) = k)$$

Bin k of count distribution at time t

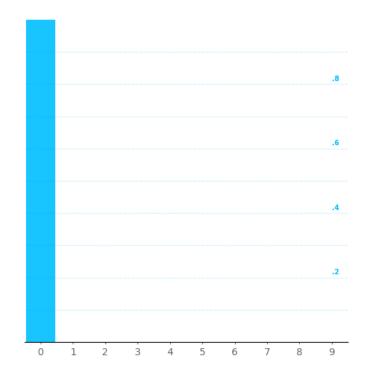
$$\Upsilon_i(k,t) := \Pr(Y_{i,\theta}(t) = k)$$

Bin k of count distribution at time t

Property 2 (Recursion on k, t)

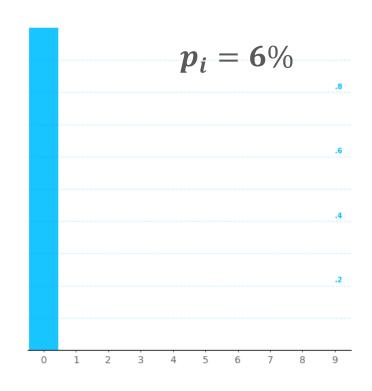
$$\Upsilon_{i}(k,t) = \begin{cases} (1-p_{i}(t))\Upsilon_{i}(k,t-1) & k=0\\ (1-p_{i}(t))\Upsilon_{i}(k,t-1) + p_{i}(t)\Upsilon_{i}(k-1,t-1) & k>0 \end{cases}$$
(9)

$$t = 0$$



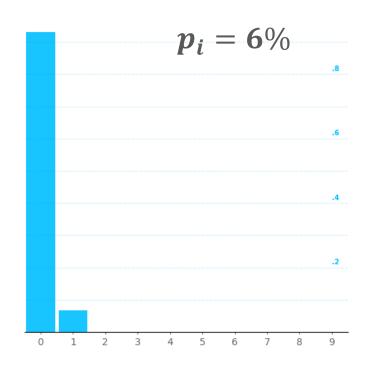
Property 2 (Recursion on k, t)

$$\Upsilon_{i}(k,t) = \begin{cases} (1-p_{i}(t))\Upsilon_{i}(k,t-1) & k=0\\ (1-p_{i}(t))\Upsilon_{i}(k,t-1) + p_{i}(t)\Upsilon_{i}(k-1,t-1) & k>0 \end{cases}$$
(9)



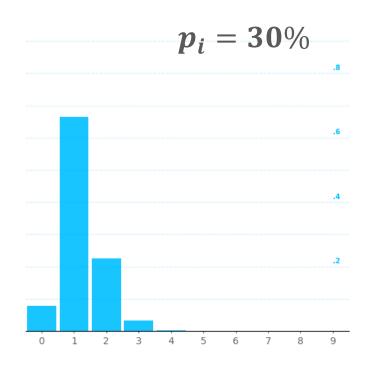
Property 2 (Recursion on k, t)

$$\Upsilon_{i}(k,t) = \begin{cases} (1-p_{i}(t))\Upsilon_{i}(k,t-1) & k=0\\ (1-p_{i}(t))\Upsilon_{i}(k,t-1) + p_{i}(t)\Upsilon_{i}(k-1,t-1) & k>0 \end{cases}$$
(9)



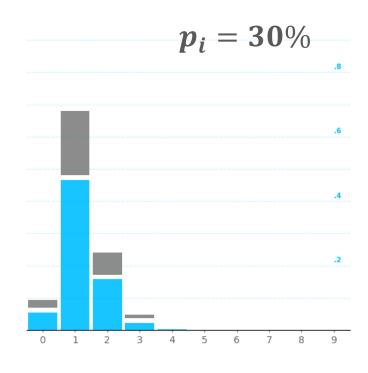
Property 2 (Recursion on k, t)

$$\Upsilon_{i}(k,t) = \begin{cases} (1-p_{i}(t))\Upsilon_{i}(k,t-1) & k=0\\ (1-p_{i}(t))\Upsilon_{i}(k,t-1) + p_{i}(t)\Upsilon_{i}(k-1,t-1) & k>0 \end{cases}$$
(9)



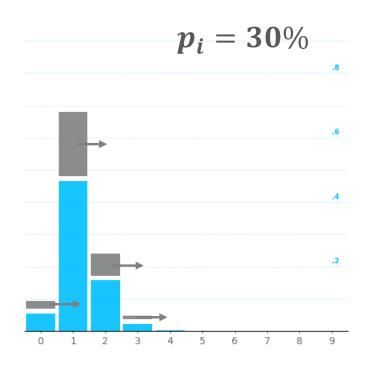
Property 2 (Recursion on k, t)

$$\Upsilon_{i}(k,t) = \begin{cases} (1-p_{i}(t))\Upsilon_{i}(k,t-1) & k=0\\ (1-p_{i}(t))\Upsilon_{i}(k,t-1) + p_{i}(t)\Upsilon_{i}(k-1,t-1) & k>0 \end{cases}$$
(9)



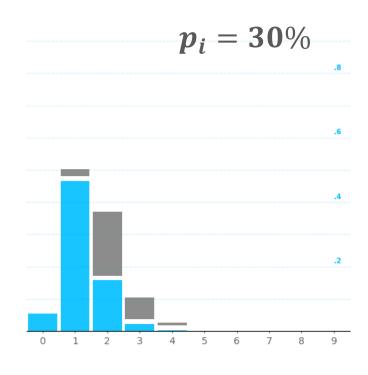
Property 2 (Recursion on k, t)

$$\Upsilon_{i}(k,t) = \begin{cases} (1-p_{i}(t))\Upsilon_{i}(k,t-1) & k=0\\ (1-p_{i}(t))\Upsilon_{i}(k,t-1) + p_{i}(t)\Upsilon_{i}(k-1,t-1) & k>0 \end{cases}$$
(9)



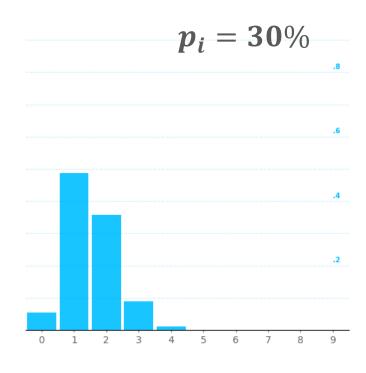
Property 2 (Recursion on k, t)

$$\Upsilon_{i}(k,t) = \begin{cases} (1-p_{i}(t))\Upsilon_{i}(k,t-1) & k=0\\ (1-p_{i}(t))\Upsilon_{i}(k,t-1) + p_{i}(t)\Upsilon_{i}(k-1,t-1) & k>0 \end{cases}$$
(9)



Property 2 (Recursion on k, t)

$$\Upsilon_{i}(k,t) = \begin{cases} (1-p_{i}(t))\Upsilon_{i}(k,t-1) & k=0\\ (1-p_{i}(t))\Upsilon_{i}(k,t-1) + p_{i}(t)\Upsilon_{i}(k-1,t-1) & k>0 \end{cases}$$
(9)



Property 2 (Recursion on k, t)

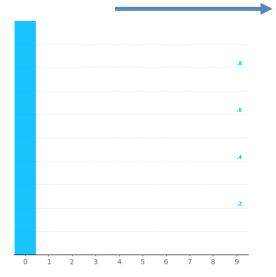
$$\Upsilon_{i}(k,t) = \begin{cases} (1-p_{i}(t))\Upsilon_{i}(k,t-1) & k=0\\ (1-p_{i}(t))\Upsilon_{i}(k,t-1) + p_{i}(t)\Upsilon_{i}(k-1,t-1) & k>0 \end{cases}$$
(9)

Property 1 (Mass shift irreversibility)

Property 1 (Mass shift irreversibility)

 $(Y_{i,\theta}(t))_{t=1}^{T_i}$ is monotonically increasing.

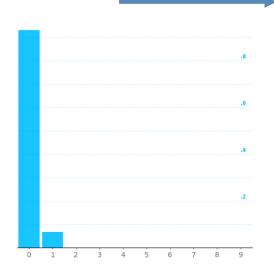
Mass moves to the right



Property 1 (Mass shift irreversibility)

 $(Y_{i,\theta}(t))_{t=1}^{T_i}$ is monotonically increasing.

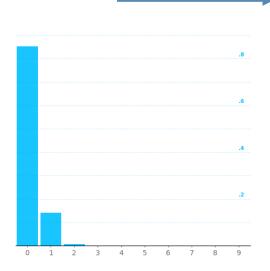
Mass moves to the right



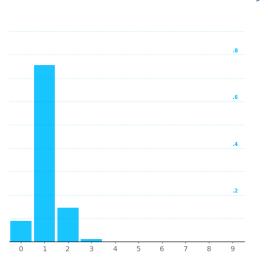
Property 1 (Mass shift irreversibility)

 $(Y_{i,\theta}(t))_{t=1}^{T_i}$ is monotonically increasing.

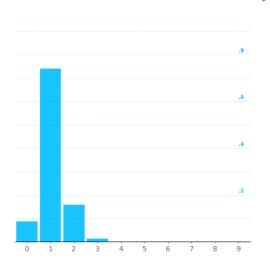
Mass moves to the right



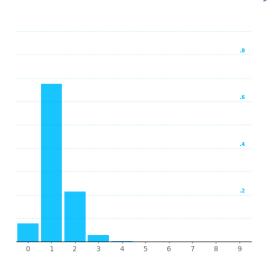
Property 1 (Mass shift irreversibility)



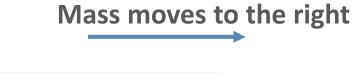
Property 1 (Mass shift irreversibility)

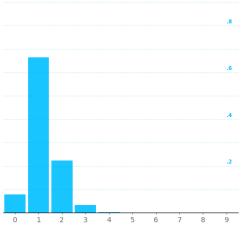


Property 1 (Mass shift irreversibility)

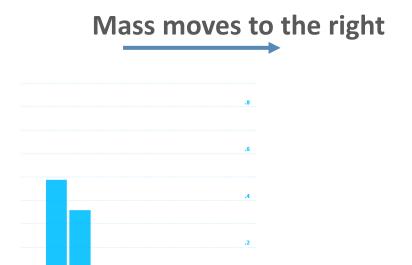


Property 1 (Mass shift irreversibility)





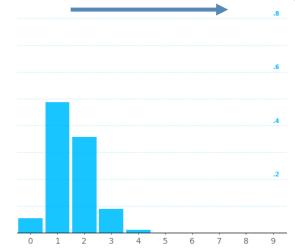
Property 1 (Mass shift irreversibility)



Property 1 (Mass shift irreversibility)

$$(Y_{i,\theta}(t))_{t=1}^{T_i}$$
 is monotonically increasing.

Mass moves to the right

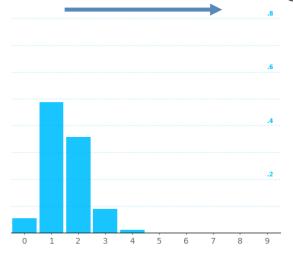


Consequence: Mass shifts are irreversible

Property 1 (Mass shift irreversibility)

$$(Y_{i,\theta}(t))_{t=1}^{T_i}$$
 is monotonically increasing.

Mass moves to the right



Consequence: Mass shifts are irreversible

- prevents the model from triggering early
- prevents the model from false alarms

MODEL Mass Convergence

$$\max_{k} \Upsilon_{i}(k, t) \leq \frac{1}{2} + \min_{j \leq t} \|\frac{1}{2} - p_{i}(j)\|$$

$$\max_{k} \Upsilon_{i}(k, t) \leq \frac{1}{2} + \min_{j \leq t} \|\frac{1}{2} - p_{i}(j)\|$$

$$L(\theta) = -\sum_{i} \log \left(\Pr \left(Y_{i,\theta} = y_i \mid \mathbf{X}_i \right) \right)$$
 Counting Loss

$$\max_{k} \Upsilon_{i}(k, t) \leq \frac{1}{2} + \min_{j \leq t} \|\frac{1}{2} - p_{i}(j)\|$$

$$L(\theta) = -\sum_{i} \log \left(\Pr\left(Y_{i,\theta} = y_i \mid \mathbf{X}_i \right) \right)$$
 Counting Loss
$$= -\sum_{i} \log \left(\Upsilon_i(y_i, T_i) \right)$$

MODEL Mass Convergence

$$\begin{split} \max_{k} \Upsilon_{i}(k,t) & \leq \frac{1}{2} + \min_{j \leq t} \|\frac{1}{2} - p_{i}(j)\| \\ L(\theta) & = -\sum_{i} \log \left(\Pr\left(Y_{i,\theta} = y_{i} \mid \mathbf{X}_{i}\right) \right) \quad \text{Counting Loss} \\ & = -\sum_{i} \log \left(\Upsilon_{i}(y_{i}, T_{i}) \right) \\ & \geq -\sum_{i} \log \left(\frac{1}{2} + \min_{j \leq t} \|\frac{1}{2} - p_{i}(j)\| \right) \end{split}$$

MODEL Mass Convergence

$$\max_{k} \Upsilon_{i}(k, t) \leq \frac{1}{2} + \min_{j \leq t} \|\frac{1}{2} - p_{i}(j)\|$$

Learns to count
$$L(\theta) = -\sum_i \log\left(\Pr\left(Y_{i,\theta} = y_i \mid \mathbf{X}_i\right)\right)$$
 Counting Loss $= -\sum_i \log\left(\Upsilon_i(y_i, T_i)\right)$ $\stackrel{(11)}{\geq} -\sum_i \log\left(\frac{1}{2} + \min_{j \leq t} \|\frac{1}{2} - p_i(j)\|\right)$

Lemma 2 (First upper bound)

$$\max_{k} \Upsilon_{i}(k, t) \leq \frac{1}{2} + \min_{j \leq t} \|\frac{1}{2} - p_{i}(j)\|$$

Learns to count
$$L(\theta) = -\sum_{i} \log \left(\Pr\left(Y_{i,\theta} = y_i \mid \mathbf{X}_i \right) \right)$$
 Counting Loss
$$= -\sum_{i} \log \left(\Upsilon_i(y_i, T_i) \right)$$
 Converge towards 0,1 extremes $\geq -\sum_{i} \log \left(\frac{1}{2} + \min_{j \leq t} \| \frac{1}{2} - p_i(j) \| \right)$

Property 3 (Sparse mass concentration) The inequality derived below reveals that, as the loss decreases, small $p_i(\cdot)$ will quickly converge towards zero.

$$\max_{k} \Upsilon_{i}(k,t) \stackrel{(8)}{\leq} \min_{l \leq t} \max_{k} \Upsilon_{i}(k,l) \stackrel{\text{ind}}{=} \min_{\sigma,l \leq t} \max_{k} \Upsilon_{i,\sigma}(k,l)$$

$$\stackrel{\text{Le Cam}}{\leq} \min_{\sigma,l \leq t} \max_{k} \frac{\lambda_{i,\sigma,l}^{k} e^{-\lambda_{i,\sigma,l}}}{k!} + 2 \sum_{j=1}^{l} p_{i,\sigma}(j)^{2}$$

$$\stackrel{\text{def}}{=} \min_{\sigma,l \leq t} \max_{k} \frac{\left[\sum_{j=1}^{l} p_{i,\sigma}(j)\right]^{k} e^{-\left[\sum_{j=1}^{l} p_{i,\sigma}(j)\right]}}{k!} + 2 \sum_{j=1}^{l} p_{i,\sigma}(j)^{2},$$

Property 3 (Sparse mass concentration) The inequality derived below reveals that, as the loss decreases, small $p_i(\cdot)$ will quickly converge towards zero.

$$\max_{k} \Upsilon_{i}(k, t) \stackrel{(8)}{\leq} \min_{l \leq t} \max_{k} \Upsilon_{i}(k, l) \stackrel{\text{ind}}{=} \min_{\sigma, l \leq t} \max_{k} \Upsilon_{i, \sigma}(k, l)$$

$$\stackrel{\text{Le Cam}}{\leq} \min_{\sigma, l \leq t} \max_{k} \frac{\lambda_{i, \sigma, l}^{k} e^{-\lambda_{i, \sigma, l}}}{k!} + 2 \sum_{j=1}^{l} p_{i, \sigma}(j)^{2}$$

$$\stackrel{\text{def}}{=} \min_{\sigma, l \leq t} \max_{k} \frac{\left[\sum_{j=1}^{l} p_{i, \sigma}(j)\right]^{k} e^{-\left[\sum_{j=1}^{l} p_{i, \sigma}(j)\right]}}{k!} + 2 \sum_{j=1}^{l} p_{i, \sigma}(j)^{2},$$

A detection cannot be split into numerous small $p_i(\cdot)$ contributions

As the model learns to count event occurrences:

As the model learns to count event occurrences:

• $p_i(\cdot)$ converge towards 0,1 extremes

As the model learns to count event occurrences:

- $p_i(\cdot)$ converge towards 0,1 extremes
- A detection cannot be split into numerous small $p_i(\cdot)$ contributions

As the model learns to count event occurrences:

- $p_i(\cdot)$ converge towards 0,1 extremes
- A detection cannot be split into numerous small $p_i(\cdot)$ contributions

A single $p_i(\cdot)$ will contain almost all of them mass for an event.

1. Almost binary predictions

- 1. Almost binary predictions
- 2. No early triggering

- 1. Almost binary predictions
- 2. No early triggering
- 3. No systematic late bias ← Not a theoretical property

- 1. Almost binary predictions
- 2. No early triggering
- 3. No systematic late bias ← Not a theoretical property

Achieved trough an implementation trick:

- 1. Almost binary predictions
- 2. No early triggering
- 3. No systematic late bias ← Not a theoretical property

Achieved trough an implementation trick: Feeding sequences of variable length

- 1. Almost binary predictions
- 2. No early triggering
- 3. No systematic late bias

- 1. Almost binary predictions
- 2. No early triggering
- 3. No systematic late bias

If the model accurately learns to count occurrences and if the events are detectable, then a coherent localization will emerge naturally.

Experiments

DRUM DETECTION Experiment Specifications

Detection of three different drum types in drum audio extracts

DRUM DETECTION Experiment Specifications

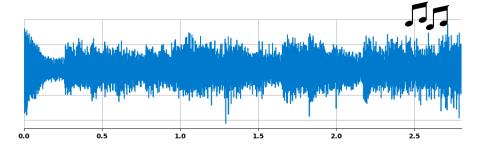
Detection of three different drum types in drum audio extracts

Tight tolerance of 50ms for a prediction to be correct

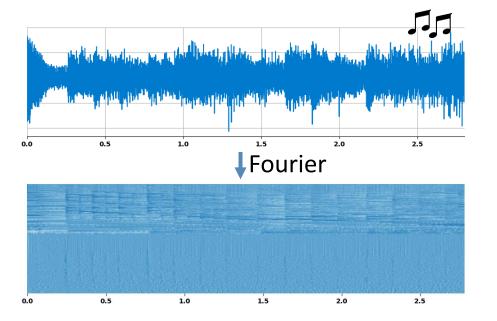
DRUM DETECTION Experiment Specifications

Detection of three different drum types in drum audio extracts

- Tight tolerance of 50ms for a prediction to be correct
- Comparison with fully-supervised benchmark models

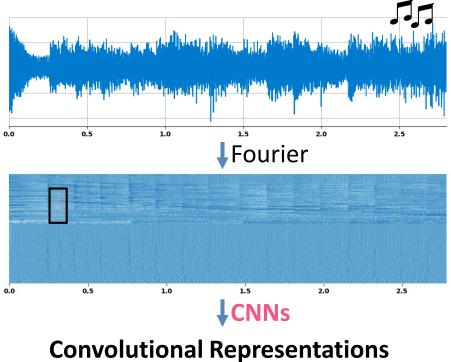


Signal



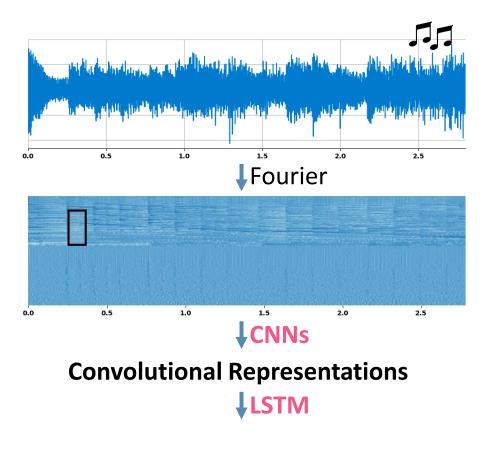
Signal

Mel-spectrogram



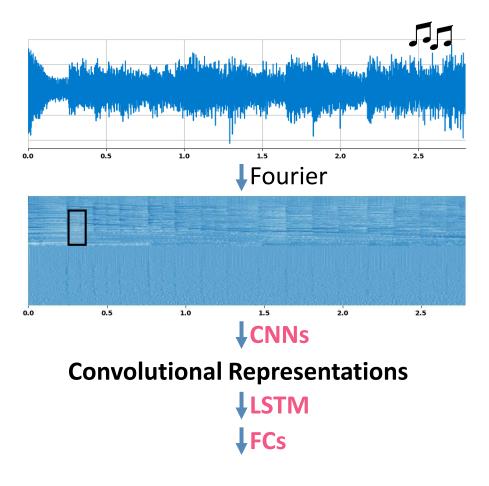
Signal

Mel-spectrogram



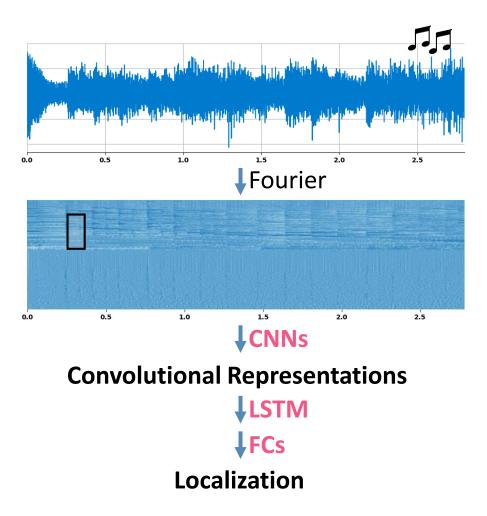
Signal

Mel-spectrogram



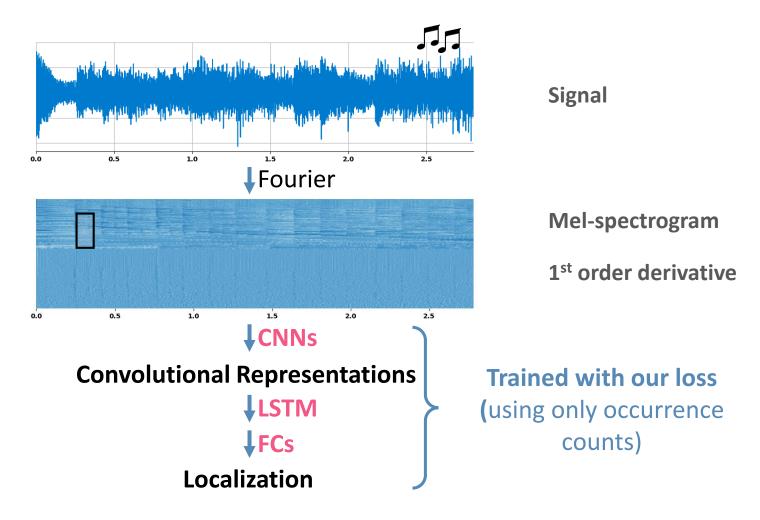
Signal

Mel-spectrogram



Signal

Mel-spectrogram



DRUM DETECTION Results

1		_	\Box	'	Р	I)	Δ′	ΓA	S	E	Т
J	_						_	\Box	\mathbf{L}	\mathbf{L}		

	Метнор	KD	SD	НН	PRE	REC	F_1
	RNN	94.7	79.5	88.3	84.1	93.3	87.5
Σ	TANHB	92.4	84.6	87.1	86.3	92.1	88.0
00	RELUTS	91.3	83.8	85.2	83.7	92.3	86.8
RANDOM	LSTMPB	94.4	84.1	91.4	90.8	90.8	90.0
\mathbf{R}_{\wedge}	GRUTS	94.2	87.1	87.7	88.6	92.7	89.7
	ours (LoCo)	92.3	81.2	93.0	90.9	87.1	88.9
	RNN	91.0	57.8	82.2	72.8	88.3	77.0
	TANHB	82.7	61.6	84.8	74.1	83.8	76.4
UBSET	RELUTS	79.4	62.1	80.8	69.6	84.2	74.1
UB	LSTMPB	85.8	68.8	83.7	78.3	84.7	79.4
S	GRUTS	87.7	62.3	79.4	73.0	85.2	76.5
	ours (LoCo)	84.9	59.4	90.0	84.8	73.5	78.1

DRUM DETECTION Results

1)_]	\cap	П	٦,	Р	Γ)	Δ	ΓΔ	S	\mathbf{E}^{r}	Г
	_		_					•	_				

	МЕТНОО	KD	SD	НН	PRE	REC	F_1
	RNN	94.7	79.5	88.3	84.1	93.3	87.5
Ξ	TANHB	92.4	84.6	87.1	86.3	92.1	88.0
00	RELUTS	91.3	83.8	85.2	83.7	92.3	86.8
ANDOM	LSTMPB	94.4	84.1	91.4	90.8	90.8	90.0
\mathbf{R}	GRUTS	94.2	87.1	87.7	88.6	92.7	89.7
	ours (LoCo)	92.3	81.2	93.0	90.9	87.1	88.9
	RNN	91.0	57.8	82.2	72.8	88.3	77.0
\vdash	TANHB	82.7	61.6	84.8	74.1	83.8	76.4
UBSET	RELUTS	79.4	62.1	80.8	69.6	84.2	74.1
UB	LSTMPB	85.8	68.8	83.7	78.3	84.7	79.4
S	GRUTS	87.7	62.3	79.4	73.0	85.2	76.5
	ours (LoCo)	84.9	59.4	90.0	84.8	73.5	78.1

State-of-the-art

DRUM DETECTION Results

Γ) _]	\Box	Т	١,	Ρ.	D	A^{T}	ГΑ	S	ĒΊ	Γ

	МЕТНОО	KD	SD	НН	PRE	REC	F_1
	RNN	94.7	79.5	88.3	84.1	93.3	87.5
Σ	TANHB	92.4	84.6	87.1	86.3	92.1	88.0
000	RELUTS	91.3	83.8	85.2	83.7	92.3	86.8
RANDOM	LSTMPB	94.4	84.1	91.4	90.8	90.8	90.0
\mathbf{R}_{A}	GRUTS	94.2	87.1	87.7	88.6	92.7	89.7
	ours (LoCo)	92.3	81.2	93.0	90.9	87.1	88.9
	RNN	91.0	57.8	82.2	72.8	88.3	77.0
	TANHB	82.7	61.6	84.8	74.1	83.8	76.4
\mathbf{SET}	RELUTS	79.4	62.1	80.8	69.6	84.2	74.1
UB	LSTMPB	85.8	68.8	83.7	78.3	84.7	79.4
\mathbf{S}	GRUTS	87.7	62.3	79.4	73.0	85.2	76.5
	ours (LoCo)	84.9	59.4	90.0	84.8	73.5	78.1

Great Overall F1-Score

State-of-the-art

Detection of three different drum types in drum audio extracts

Further tests on HH reveal that:

Detection of three different drum types in drum audio extracts

Further tests on HH reveal that:

• In that setting, the standard deviation is only of **4.35ms** for the distance between true and predicted hits.

Detection of piano notes in audio extracts

Detection of piano notes in audio extracts

Complex task with 88 channels

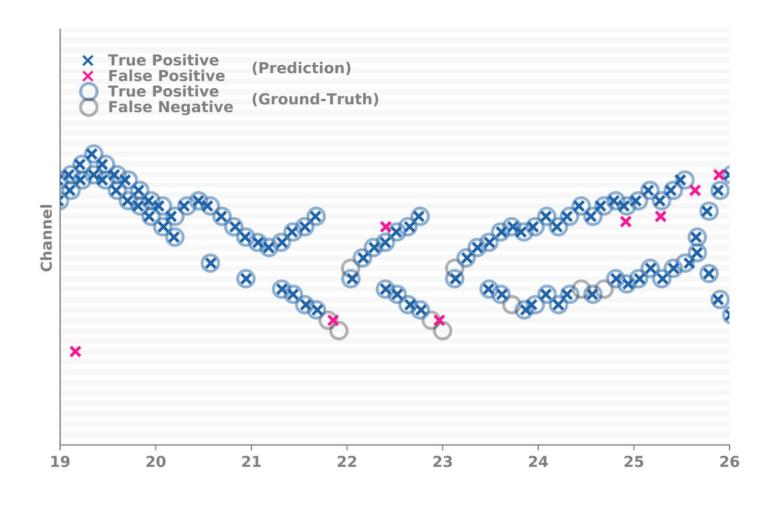
Detection of piano notes in audio extracts

- Complex task with 88 channels
- Tight tolerance of 50ms for a prediction to be considered correct

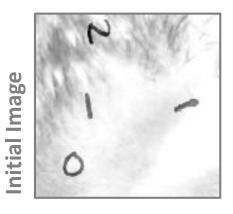
Detection of piano notes in audio extracts

- Complex task with 88 channels
- Tight tolerance of 50ms for a prediction to be considered correct
- Comparison with fully-supervised benchmark models

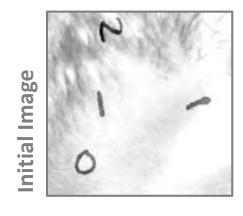
Метнор	Pre	REC	F_1
SIGTIA ET AL.(2016)	44.97	49.55	46.58
KELZ ET AL.(2016)	44.27	61.29	50.94
HAWTHORNE ET AL.(2017)	84.24	80.67	82.29
ours (LoCo)	76.22	68.61	71.99

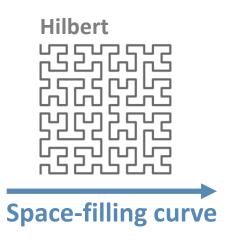


Digit Detection Experiment

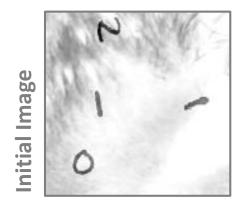


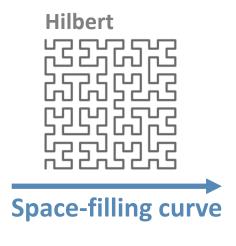
Not a sequence

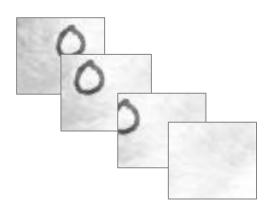




Not a sequence

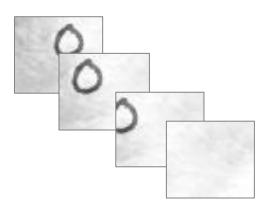




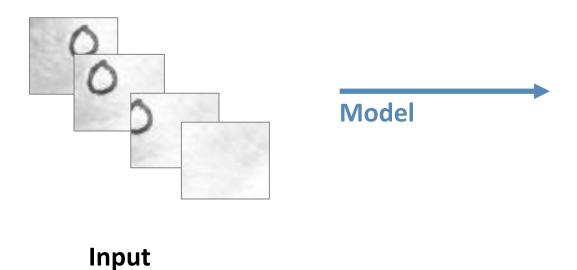


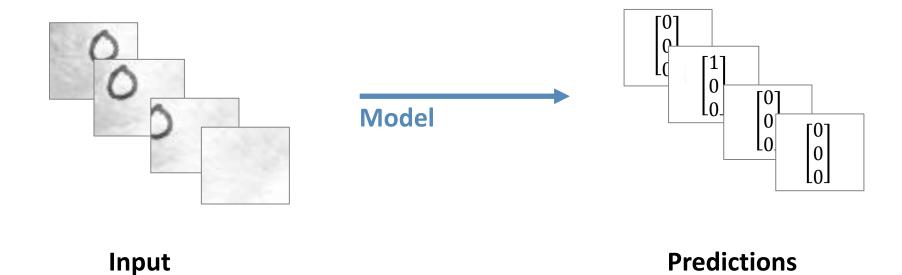
Not a sequence

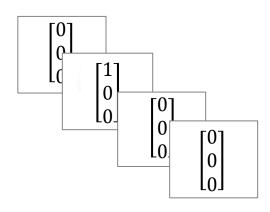
A sequence



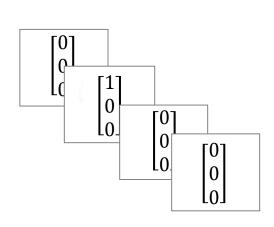
Input

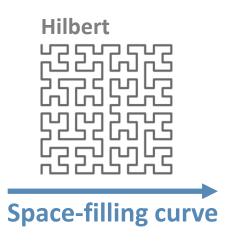




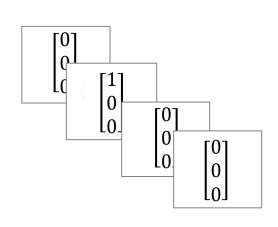


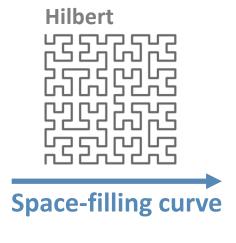
Predictions





Predictions





Predictions

DIGIT DETECTION EXPERIMENT Representations

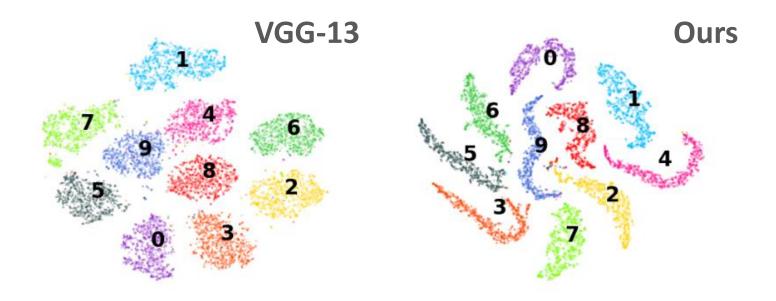
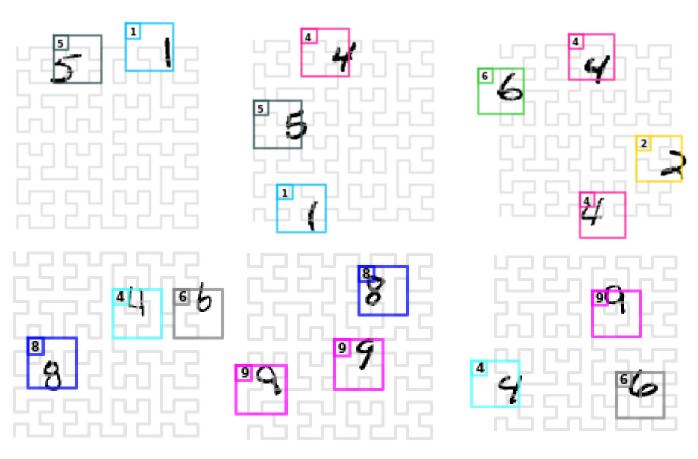


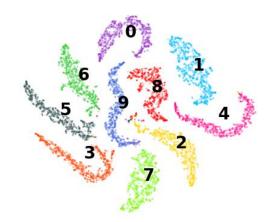
Figure 4. Digit Representations. Comparison of t-SNE digit feature representations resulting from the *fully*-supervised VGG-13 architecture (left) and from our *weakly*-supervised approach (right).

DIGIT DETECTION EXPERIMENT Detection Performance

Mean absolute distance between true and estimated bounding box centers: 9:04 pixels (approx. step size of the space filling curve)

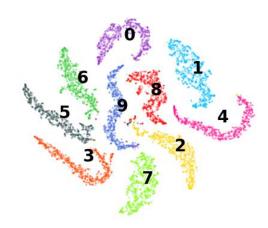


The model learnt:



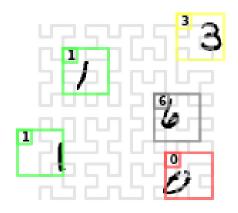
The model learnt:

1. Feature representation



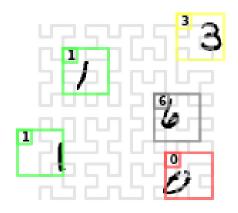
The model learnt:

- 1. Feature representation
- 2. Space-mapping



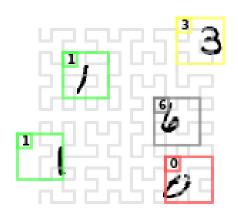
The model learnt:

- 1. Feature representation
- 2. Space-mapping
- 3. Object detection



The model learnt:

- 1. Feature representation
- 2. Space-mapping
- 3. Object detection



Using only occurrence counts as training labels

CONCLUSION

This work shows that implicit model constraints can be used to ensure that accurate localization emerges as a byproduct of learning to count occurrences.

CONCLUSION

This work shows that implicit model constraints can be used to ensure that accurate localization emerges as a byproduct of learning to count occurrences.

Competitive results against fully-supervised state-of-the-art models.

Questions?

