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Main Idea

Unlike existing methods, in which localization is
explicitly achieved by design, our model learns
localization implicitly as a byproduct of learning to
count instances.
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Y follows a Poisson-binomial distribution
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Consequence: Mass shifts are irreversible
• prevents the model from triggering early
• prevents the model from false alarms

Mass moves to the right
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• pi(∙) converge towards 0,1 extremes

• A detection cannot be split into 
numerous small pi(∙) contributions

As the model learns to count event occurrences:

A single 𝐩𝐢 ∙ will contain almost all of them mass for an event.
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3.   No systematic late bias

If the model accurately learns to count occurrences and if the events 
are detectable, then a coherent localization will emerge naturally.

2.   No early triggering

1.   Almost binary predictions
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DRUM DETECTION
Results

Further tests on HH reveal that:

• In that setting, the standard deviation is only of 4.35ms
for the distance between true and predicted hits.

Detection of three different drum
types in drum audio extracts
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• Comparison with fully-supervised benchmark models
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VGG-13 Ours
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Detection Performance

Mean absolute distance between true and 
estimated bounding box centers: 9:04 pixels 
(approx. step size of the space filling curve)
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DIGIT DETECTION EXPERIMENT
Conclusion

The model learnt:

1.  Feature representation

2.  Space-mapping

3.  Object detection

Using only occurrence counts as training labels



Weakly-Supervised Temporal Localization via Occurrence Count Learning | Julien Schroeter | Kirill Sidorov | David Marshall

CONCLUSION

This work shows that implicit model constraints can be used 
to ensure that accurate localization emerges as a byproduct 
of learning to count occurrences.
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CONCLUSION

This work shows that implicit model constraints can be used 
to ensure that accurate localization emerges as a byproduct 
of learning to count occurrences.

Competitive results against fully-supervised state-of-the-art 
models.
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