A Statistical Investigation of Long Memory in Language and Music

Alexander Greaves-Tunnell and Zaid Harchaoui

ICML 2019

Problem

• How do we define long-range dependence?

- How do we define long-range dependence?
- How can it be estimated in modern sources of sequence data?

- How do we define long-range dependence?
- How can it be estimated in modern sources of sequence data?
- How can we evaluate if a model has captured this property?

• Introduce a framework for evaluation of long-range dependence anchored in the literature of **long memory** stochastic processes.

• Introduce a framework for evaluation of long-range dependence anchored in the literature of **long memory** stochastic processes.

• Introduce a framework for evaluation of long-range dependence anchored in the literature of **long memory** stochastic processes.

• Introduce a framework for evaluation of long-range dependence anchored in the literature of **long memory** stochastic processes.

• Adapt **semiparametric** statistical methods to define estimation and testing procedure for long memory in high dimensions.

Results: Language and Music

Do language and music data have long memory?

Results: Language and Music

Do language and music data have long memory?

Visual heuristic from differing behavior of partial sums:

$$\sum_{k=1}^{K} |\gamma(k)| \to \begin{cases} \infty & \text{long memory} \\ c < \infty & \text{short memory} \end{cases}, \text{ as } K \to \infty$$

Results: Language and Music

Do language and music data have long memory?

Visual heuristic from differing behavior of partial sums:

 $\sum_{k=1}^{K} |\gamma(k)| \to \begin{cases} \infty & \text{long memory} \\ c < \infty & \text{short memory} \end{cases}, \text{ as } K \to \infty$

Results: RNN Models

Hypothesis test for long memory:

anticipated result

٠

$$\mathcal{H}_0: \mathbf{d} = 0$$
 vs. $\mathcal{H}_A: \mathbf{d} > 0$

Results: RNN Models

Hypothesis test for long memory:

experimental result

$$\widetilde{\mathcal{H}_0: \boldsymbol{\mathsf{d}}} = \boldsymbol{0} \qquad \text{vs. } \mathcal{H}_\mathsf{A}: \boldsymbol{\mathsf{d}} > \boldsymbol{0}.$$

Model	memory d	p-value	Reject \mathcal{H}_0 ?
LSTM (trained)	$-8.59 imes10^{-4}$	0.583	Х
LSTM (untrained)	$-4.17 imes10^{-4}$	0.572	Х
Memory cell	-5.96×10^{-4}	0.552	Х
SCRN	2.37×10^{-3}	0.324	Х

Results: RNN Models

Hypothesis test for long memory:

experimental result

$$\widetilde{\mathcal{H}_0: \mathbf{d} = 0}$$
 vs. $\mathcal{H}_A: \mathbf{d} > 0$.

Model	memory d	p-value	Reject \mathcal{H}_0 ?
LSTM (trained)	$-8.59 imes10^{-4}$	0.583	Х
LSTM (untrained)	$-4.17 imes10^{-4}$	0.572	Х
Memory cell	$-5.96 imes10^{-4}$	0.552	Х
SCRN	2.37×10^{-3}	0.324	Х

Come see our poster! Pacific Ballroom # 253.