

Variational Annealing of GANs: A Langevin Perspective

> Chenyang Tao[†] chenyang.tao@duke.edu

Electrical & Computer Engineering, Duke University

Jun 12, 2019 @ ICML, Long Beach, CA, USA

Joint work with S Dai, L Chen, K Bai, J Chen, C Liu, G Bobashev and L Carin

Outline

1. GAN Training & Likelihood Regularization

2. Variational Annealing From a Langevin Perspective

Fruditio e'

3. Experimental Results

Religiu

General Formulation of GANs

Adversarial distribution matching

- A generator $G(z), z \sim p(z)$, a critic D(x)
- A variational objective $\mathbb{V}(\mu_d, \rho_G; D)$
 - computed using samples of data μ_d and model ρ_G
 - d(μ_d, ρ_G) = max_D V(μ_d, ρ_G; D) defines a discrepancy metric
- Solve the minimax game

$$\min_{G} \max_{D} \mathbb{V}(\mu_d, \rho_G; D)$$

- So explicit specification of likelihoods
- Brittle training, mode collapsing

• □ ▶ • □ ▶ • □ ▶ • □ ▶

§GAN & Likelihood §A Langevin View §Experiments ■

A Concrete Example (That Is of Particular Interest)

RKL GAN

■ Let $V_{\mathsf{RKL}}(\rho,\mu;D) \triangleq \mathbb{E}_{X\sim\mu}[D(X)] + \mathbb{E}_{X'\sim\rho}[\log(-D(X'))]$ ■ KL $(\rho \parallel \mu) = \mathbb{E}_{X\sim\rho}[\log \frac{\rho(X)}{\mu(X)}] \Leftrightarrow \max_D\{V_{\mathsf{RKL}}(\mu,\rho;D)\}$

・ロト ・ 四ト ・ ヨト ・ ヨト

Regularizing GANs with Likelihoods

$$\rho^* = \arg\min_{\rho} \{\max_{D} \{ V_{\mathsf{RKL}}(\rho, \mu; D) \} - \lambda \mathcal{R}_{\mu}(\rho) \}$$

With model likelihoods $\mathcal{R}_{\mu}(ho)$ = $\mathbb{E}_{ ho}[\log ho]$	[Warde-Farley, 2017]
--	----------------------

Encouraging sample diversity (disperse)

イロト イポト イヨト イヨト

§GAN & Likelihood §A Langevin View §Experiments ■ ■ ■

Regularizing GANs with Likelihoods: Gradient View

$$\rho^* = \arg\min_{\rho} \{ \max_{D} \{ V_{\mathsf{RKL}}(\rho, \mu; D) \} - \lambda \mathcal{R}_{\mu}(\rho) \}$$

Likelihood Regularization

Entropy Regularization

We aim to provide theoretical groundings for such practices!

イロト イポト イヨト イヨ

Preliminary

Gibbs distribution

- $\mu_{\beta}(x) \propto \exp(-\beta \psi(x))$ is called a Gibbs distribution
 - $\psi(x)$ is the potential function
 - β is the inverse temperature

Annealing approaches the target distribution by gradually tuning β to avoid numerical difficulties

Figure: Illustration of annealed Gibbs distribution in 1-D. β = 1 (green) is the target distribution, β < 1, mode covering and β > 1, mode seeking.

イロト イヨト イヨト イヨト

The Link

1914 *Fokker-Plank* Equation $\partial_t \rho = \nabla \cdot (\rho \nabla \psi) + \beta^{-1} \Delta \rho$

2014 Generative Adversarial Net $\sum_{G} \min_{G} \left\{ \max_{D} \{ \mathbb{E}_{X \sim p_d} [D(X)] - \mathbb{E}_{X' \sim p_G} [\ln(-D(X'))] \} + \lambda \ln p_d(X) \right\}$

The Link

They All Minimize The *Free Energy*: $\mathcal{F}_{\psi}(\rho; \beta) \triangleq \beta \mathbb{E}_{\rho}[\psi] + \mathbb{E}_{\rho}[ln \rho]$

2014 Generative Adversarial Net $\sum_{G} \min_{G} \left\{ \max_{D} \{ \mathbb{E}_{X \sim p_{d}}[D(X)] - \mathbb{E}_{X' \sim p_{G}}[\ln(-D(X'))] \} + \lambda \ln p_{d}(X) \right\}$

э

The Link

1914 *Fokker-Plank* Equation $\partial_t \rho = \nabla \cdot (\rho \nabla \psi) + \beta^{-1} \Delta \rho$

The Solution is Given by The Gibbs Distribution $\mu_{\psi,eta}(x) \propto e^{-eta\psi(x)}$

2014 Generative Adversarial Net $\min_{G} \left\{ \max_{D} \{ \mathbb{E}_{X \sim p_{d}}[D(X)] - \mathbb{E}_{X' \sim p_{G}}[\ln(-D(X'))] \} + \lambda \ln p_{d}(X) \right\}$

Effect of Likelihood Regularization & Its Implications

Equivalence of Likelihood & Entropy Regularization

$$\rho^* = \arg\min_{\rho} \{\max_{D} \{ V_{\mathsf{RKL}}(\rho, \mu; D) \} - \lambda \mathcal{R}_{\mu}(\rho) \}$$

For likelihood regularization $\mathcal{R}_{\mu}(\rho) = -\mathbb{E}_{\rho}[\log \mu] \Rightarrow \rho_{\text{lik}}^{*}(x) \propto \exp(-(\lambda+1)\psi(x))$ For entropy regularization $\mathcal{R}_{\mu}(\rho) = \mathbb{E}_{\rho}[\log \rho] \Rightarrow \rho_{\text{ent}}^{*}(x) \propto \exp(-(\lambda+1)^{-1}\psi(x))$

Implications

Likelihood/Entropy regularization bias the target distribution!

Replacing The Likelihood with Score Function Estimate

Challenges and solutions

- We don't have the likelihood for data. That said, we know
- $\log \mu(G_{\theta}(z)) \Leftrightarrow \mathcal{R}_{\mu}(z) \triangleq G_{\theta}(z)^{T} \mathsf{StopGrad}\{S_{\mu}(G_{\theta}(z))\}$
 - S_µ(x) = ∇_x log µ(x) is the (data) score function
- Estimating score function is way easier than likelihood

Figure 6. Learning from an unnormalized density to sample the kidney distribution. Top left: target distribution; bottom left: model distribution initialization; 'w/' with variational annealing; 'w/o' without annealing.

Variational Annealing of GANs: A Langevin Perspective

イロト イヨト イヨト イヨト

Experiments: Quantitative & Qualitative Results

Static Annealing										Dynamic Annealing				
λ	-50	-10	$^{-1}$	-0.1	-0.01	0	0.01	0.1	1	10	50	PMA	NMA	OA
Inception score (higher is considered better)														
RKL-GAN	6.24	6.37	6.35	6.33	6.35	6.25	6.24	6.35	6.41	6.19	6.17	6.56	7.08	7.05
JSD-GAN	6.68	6.84	6.64	6.35	6.61	6.29	6.67	6.30	6.93	6.48	6.22	6.80	6.99	6.96
W-GAN	5.77	6.14	6.29	6.86	6.62	5.93	6.22	6.54	5.95	6.00	6.00	6.95	6.92	6.91
FID score (lower is considered better)														
RKL-GAN	38.4	34.5	36.7	36.5	37.0	36.5	37.2	36.1	38.8	36.0	37.3	34.4	29.2	28.9
JSD-GAN	34.9	30.9	35.19	36.6	33.0	37.4	33.5	34.9	30.7	32.75	34.7	30.9	31.0	29.1
W-GAN	44.1	40.6	38.6	31.4	30.4	42.8	39.43	33.6	41.4	41.6	40.2	29.3	29.8	29.0

Table 1. Quantative results for variational annealing on Cifar10.

Figure 3. Cifar10 and CelebA generation results with negative static annealing.

Variational Approxima of CANe: A Langovi

Poster 12 Jun, 2019 Wed @ Pacific Ballroom #10

Variational Annealing of GANs: A Langevin Perspective

Thank you.

Welcome to our poster #10 @ Pacific Ballroom tonight.

The authors would like to thank Prof D Waxman for fruitful discussions.

Variational Annealing of GANs: A Langevin Perspective