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General Formulation of GANs

Adversarial distribution matching

� A generator G(z), z ∼ p(z), a critic D(x)� A variational objective V(µd,⇢G; D)
computed using samples of data µd and model ⇢G
d(µd,⇢G) =maxD V(µd,⇢G; D) defines a discrepancy metric

� Solve the minimax game

min
G

max
D

V(µd,⇢G; D)
, No explicit specification of likelihoods
/ Brittle training, mode collapsing
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A Concrete Example (That Is of Particular Interest)

RKL GAN

� Let VRKL(⇢, µ; D) � EX∼µ[D(X)] +EX′∼⇢[log(−D(X′))]
� KL(⇢ ∥ µ) = EX∼⇢[log ⇢(X)

µ(X)]⇔maxD{VRKL(µ,⇢; D)}
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Regularizing GANs with Likelihoods

⇢∗ = argmin
⇢
{max

D
{VRKL(⇢, µ; D)} − �Rµ(⇢)}

With data likelihoods Rµ(⇢) = −E⇢[logµ] [Li, 2018]

� Promoting plausible samples (concentrate)

With model likelihoods Rµ(⇢) = E⇢[log ⇢] [Warde-Farley, 2017]

� Encouraging sample diversity (disperse)
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Regularizing GANs with Likelihoods: Gradient View

⇢∗ = argmin
⇢
{max

D
{VRKL(⇢, µ; D)} − �Rµ(⇢)}

Likelihood Regularization Entropy Regularization

We aim to provide theoretical groundings for such practices!
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Preliminary

Gibbs distribution

� µ�(x)∝ exp(−� (x)) is called a Gibbs distribution

 (x) is the potential function

� is the inverse temperature

� Annealing approaches the target distribution by gradually

tuning � to avoid numerical difficulties

Figure: Illustration of annealed Gibbs distribution in 1-D. � = 1 (green) is

the target distribution, � < 1, mode covering and � > 1, mode seeking.
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The Link

Ito-Langevin Diffusion
!"# = −∇' "# !( + 2+,-!.#

����

/#0 = ∇ 1 0∇' + +,-∆0
Fokker-Plank Equation 
����

min
6

max
9

:;~=> ?(") − :;B~=C ln −? "′ + F lnGH "
Generative Adversarial Net
����
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The Link

Ito-Langevin Diffusion
!"# = −∇' "# !( + 2+,-!.#

����

/#0 = ∇ 1 0∇' + +,-∆0
Fokker-Plank Equation 
����

min
6

max
9

:;~=> ?(") − :;B~=C ln −? "′ + F lnGH "
Generative Adversarial Net
����

They All Minimize The Free Energy: IJ K; M ≜ O:P J + :P QRP
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The Link

Ito-Langevin Diffusion
!"# = −∇' "# !( + 2+,-!.#

����

/#0 = ∇ 1 0∇' + +,-∆0

Fokker-Plank Equation 
����

min
6

max
9

:;~=> ?(") − :;B~=C ln −? "′ + F lnGH "

Generative Adversarial Net
����

The Solution is Given by The Gibbs Distribution IJ,L M ∝ O,LJ M
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Effect of Likelihood Regularization & Its Implications

Equivalence of Likelihood & Entropy Regularization

⇢∗ = argmin
⇢
{max

D
{VRKL(⇢, µ; D)} − �Rµ(⇢)}

� For likelihood regularizationRµ(⇢) = −E⇢[logµ]⇒ ⇢∗lik(x)∝ exp(−(� + 1) (x))
� For entropy regularizationRµ(⇢) = E⇢[log⇢]⇒ ⇢∗ent(x)∝ exp(−(� + 1)−1 (x))

Implications

� Likelihood/Entropy regularization bias the target distribution!
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Replacing The Likelihood with Score Function Estimate

Challenges and solutions

� We don’t have the likelihood for data. That said, we know� logµ(G✓(z))⇔Rµ(z) � G✓(z)TStopGrad{Sµ(G✓(z))}
Sµ(x) = ∇x logµ(x) is the (data) score function

� Estimating score function is way easier than likelihood
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Experiments: Dynamic Annealing

Variational Annealing of GANs: A Langevin Perspective

Table 1. Quantative results for variational annealing on Cifar10.

Static Annealing Dynamic Annealing
� �50 �10 �1 �0.1 �0.01 0 0.01 0.1 1 10 50 PMA NMA OA

Inception score (higher is considered better)
RKL-GAN 6.24 6.37 6.35 6.33 6.35 6.25 6.24 6.35 6.41 6.19 6.17 6.56 7.08 7.05
JSD-GAN 6.68 6.84 6.64 6.35 6.61 6.29 6.67 6.30 6.93 6.48 6.22 6.80 6.99 6.96
W-GAN 5.77 6.14 6.29 6.86 6.62 5.93 6.22 6.54 5.95 6.00 6.00 6.95 6.92 6.91

FID score (lower is considered better)
RKL-GAN 38.4 34.5 36.7 36.5 37.0 36.5 37.2 36.1 38.8 36.0 37.3 34.4 29.2 28.9
JSD-GAN 34.9 30.9 35.19 36.6 33.0 37.4 33.5 34.9 30.7 32.75 34.7 30.9 31.0 29.1
W-GAN 44.1 40.6 38.6 31.4 30.4 42.8 39.43 33.6 41.4 41.6 40.2 29.3 29.8 29.0

Figure 3. Cifar10 and CelebA generation results with negative static annealing.
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Figure 4. Different dynamic regularization schemes.
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Figure 5. Learning dynamics with dynamic annealing.

Epoches 1 2 3 4 5 6 7 8 9

K
id

. 
w

/
K

id
. 
w

/o

Figure 6. Learning from an unnormalized density to sample the kidney distribution. Top left: target distribution; bottom left: model
distribution initialization; ‘w/’ with variational annealing; ‘w/o’ without annealing.

dynamic annealing schemes in Figure 4. PMA is appealing
when the model distribution is away from the data mani-
fold, as it attracts model distributions to the more plausible
regions. NMA is especially helpful when the target distri-
bution has isolated modes, as it disperses the samples to
make the transition to missed modes easier. OA combines
consolidation with exploration: using positive annealing to
consolidate the patterns learned, and using negative anneal-
ing to explore new patterns.

In Figure 5 we show the evolution of the FID score for the

above three annealing schemes using W-GAN; and the IS
and FID scores produced are summarized alongside those
from static annealing in Table 1. Additionally, we also di-
rectly estimate the likelihood using annealed importance
sampling (AIS) (Neal, 2001; Wu et al., 2017) and report the
results in Table 2. As observed, consistent with our hypoth-
esis, dynamically annealed training significantly improved
results. Armed with the strength from both positive and
negative annealing, OA enjoyed even better performance
evidenced by all three evaluation metrics considered here.
We remark that the FID dynamics for OA appeared to be
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Experiments: Quantitative & Qualitative Results

Variational Annealing of GANs: A Langevin Perspective

Table 1. Quantative results for variational annealing on Cifar10.

Static Annealing Dynamic Annealing
� �50 �10 �1 �0.1 �0.01 0 0.01 0.1 1 10 50 PMA NMA OA

Inception score (higher is considered better)
RKL-GAN 6.24 6.37 6.35 6.33 6.35 6.25 6.24 6.35 6.41 6.19 6.17 6.56 7.08 7.05
JSD-GAN 6.68 6.84 6.64 6.35 6.61 6.29 6.67 6.30 6.93 6.48 6.22 6.80 6.99 6.96
W-GAN 5.77 6.14 6.29 6.86 6.62 5.93 6.22 6.54 5.95 6.00 6.00 6.95 6.92 6.91

FID score (lower is considered better)
RKL-GAN 38.4 34.5 36.7 36.5 37.0 36.5 37.2 36.1 38.8 36.0 37.3 34.4 29.2 28.9
JSD-GAN 34.9 30.9 35.19 36.6 33.0 37.4 33.5 34.9 30.7 32.75 34.7 30.9 31.0 29.1
W-GAN 44.1 40.6 38.6 31.4 30.4 42.8 39.43 33.6 41.4 41.6 40.2 29.3 29.8 29.0

Figure 3. Cifar10 and CelebA generation results with negative static annealing.
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Figure 6. Learning from an unnormalized density to sample the kidney distribution. Top left: target distribution; bottom left: model
distribution initialization; ‘w/’ with variational annealing; ‘w/o’ without annealing.

dynamic annealing schemes in Figure 4. PMA is appealing
when the model distribution is away from the data mani-
fold, as it attracts model distributions to the more plausible
regions. NMA is especially helpful when the target distri-
bution has isolated modes, as it disperses the samples to
make the transition to missed modes easier. OA combines
consolidation with exploration: using positive annealing to
consolidate the patterns learned, and using negative anneal-
ing to explore new patterns.

In Figure 5 we show the evolution of the FID score for the

above three annealing schemes using W-GAN; and the IS
and FID scores produced are summarized alongside those
from static annealing in Table 1. Additionally, we also di-
rectly estimate the likelihood using annealed importance
sampling (AIS) (Neal, 2001; Wu et al., 2017) and report the
results in Table 2. As observed, consistent with our hypoth-
esis, dynamically annealed training significantly improved
results. Armed with the strength from both positive and
negative annealing, OA enjoyed even better performance
evidenced by all three evaluation metrics considered here.
We remark that the FID dynamics for OA appeared to be
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Thank you.

Welcome to our poster #10 @ Pacific Ballroom tonight.

The authors would like to thank Prof D Waxman for fruitful discussions.

Poster 12 Jun, 2019 Wed @ Pacific Ballroom #10 C TaoVariational Annealing of GANs: A Langevin Perspective


	GAN Training & Likelihood Regularization
	
	
	
	

	Variational Annealing From a Langevin Perspective
	
	
	

	Experimental Results
	
	


