
A Wrapped Normal Distribution on Hyperbolic Space
for Gradient Based Learning

ICML’19, Jun 12th, 2019

Yoshihiro Nagano1), Shoichiro Yamaguchi2), Yasuhiro Fujita2), Masanori Koyama2)

1) Department of Complexity Science, The University of Tokyo, Japan
2) Preferred Networks, Inc., Japan

Code: github.com/pfnet-research/hyperbolic_wrapped_distribution
Poster: 6:30-9:00 PM @Pacific Ballroom #7

Motivation

4 8 6 | N A T U R E | V O L 5 2 9 | 2 8 J A N U A R Y 2 0 1 6

ARTICLERESEARCH

learning of convolutional networks, won 11% of games against Pachi23
and 12% against a slightly weaker program, Fuego24.

Reinforcement learning of value networks
The final stage of the training pipeline focuses on position evaluation,
estimating a value function vp(s) that predicts the outcome from posi-
tion s of games played by using policy p for both players28–30

E()= | = ∼…v s z s s a p[,]p
t t t T

Ideally, we would like to know the optimal value function under
perfect play v*(s); in practice, we instead estimate the value function

ρv p for our strongest policy, using the RL policy network pρ. We approx-
imate the value function using a value network vθ(s) with weights θ,

⁎()≈ ()≈ ()θ ρv s v s v sp . This neural network has a similar architecture
to the policy network, but outputs a single prediction instead of a prob-
ability distribution. We train the weights of the value network by regres-
sion on state-outcome pairs (s, z), using stochastic gradient descent to
minimize the mean squared error (MSE) between the predicted value
vθ(s), and the corresponding outcome z

∆θ
θ

∝
∂ ()
∂
(− ())θ

θ
v s z v s

The naive approach of predicting game outcomes from data con-
sisting of complete games leads to overfitting. The problem is that
successive positions are strongly correlated, differing by just one stone,
but the regression target is shared for the entire game. When trained
on the KGS data set in this way, the value network memorized the
game outcomes rather than generalizing to new positions, achieving a
minimum MSE of 0.37 on the test set, compared to 0.19 on the training
set. To mitigate this problem, we generated a new self-play data set
consisting of 30 million distinct positions, each sampled from a sepa-
rate game. Each game was played between the RL policy network and
itself until the game terminated. Training on this data set led to MSEs
of 0.226 and 0.234 on the training and test set respectively, indicating
minimal overfitting. Figure 2b shows the position evaluation accuracy
of the value network, compared to Monte Carlo rollouts using the fast
rollout policy pπ; the value function was consistently more accurate.
A single evaluation of vθ(s) also approached the accuracy of Monte
Carlo rollouts using the RL policy network pρ, but using 15,000 times
less computation.

Searching with policy and value networks
AlphaGo combines the policy and value networks in an MCTS algo-
rithm (Fig. 3) that selects actions by lookahead search. Each edge

(s, a) of the search tree stores an action value Q(s, a), visit count N(s, a),
and prior probability P(s, a). The tree is traversed by simulation (that
is, descending the tree in complete games without backup), starting
from the root state. At each time step t of each simulation, an action at
is selected from state st

= (()+ ())a Q s a u s aargmax , ,t
a

t t

so as to maximize action value plus a bonus

()∝
()
+ ()

u s a P s a
N s a

, ,
1 ,

that is proportional to the prior probability but decays with
repeated visits to encourage exploration. When the traversal reaches a
leaf node sL at step L, the leaf node may be expanded. The leaf position
sL is processed just once by the SL policy network pσ. The output prob-
abilities are stored as prior probabilities P for each legal action a,
()= (|)σP s a p a s, . The leaf node is evaluated in two very different ways:

first, by the value network vθ(sL); and second, by the outcome zL of a
random rollout played out until terminal step T using the fast rollout
policy pπ; these evaluations are combined, using a mixing parameter
λ, into a leaf evaluation V(sL)

λ λ()= (−) ()+θV s v s z1L L L

At the end of simulation, the action values and visit counts of all
traversed edges are updated. Each edge accumulates the visit count and
mean evaluation of all simulations passing through that edge

∑

∑

()= ()

()=
()

() ()

=

=

N s a s a i

Q s a
N s a

s a i V s

, 1 , ,

, 1
,

1 , ,

i

n

i

n

L
i

1

1

where sL
i is the leaf node from the ith simulation, and 1(s, a, i) indicates

whether an edge (s, a) was traversed during the ith simulation. Once
the search is complete, the algorithm chooses the most visited move
from the root position.

It is worth noting that the SL policy network pσ performed better in
AlphaGo than the stronger RL policy network pρ, presumably because
humans select a diverse beam of promising moves, whereas RL opti-
mizes for the single best move. However, the value function
()≈ ()θ ρv s v sp derived from the stronger RL policy network performed

Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation
traverses the tree by selecting the edge with maximum action value Q,
plus a bonus u(P) that depends on a stored prior probability P for that
edge. b, The leaf node may be expanded; the new node is processed once
by the policy network pσ and the output probabilities are stored as prior
probabilities P for each action. c, At the end of a simulation, the leaf node

is evaluated in two ways: using the value network vθ; and by running
a rollout to the end of the game with the fast rollout policy pπ, then
computing the winner with function r. d, Action values Q are updated to
track the mean value of all evaluations r(·) and vθ(·) in the subtree below
that action.

Selectiona b c dExpansion Evaluation Backup

pS

pV

Q + u(P)

Q + u(P)Q + u(P)

Q + u(P)

P P

P P

Q

Q

QQ

Q

rr r r

P

max

max

P

QT

QT

QT

QT

QT QT

© 2016 Macmillan Publishers Limited. All rights reserved

[Silver+2016]

Mammal

Primate

Human Monkey

Rodent

Motivation

Mammal

Primate

Human Monkey

Rodent

4 8 6 | N A T U R E | V O L 5 2 9 | 2 8 J A N U A R Y 2 0 1 6

ARTICLERESEARCH

learning of convolutional networks, won 11% of games against Pachi23
and 12% against a slightly weaker program, Fuego24.

Reinforcement learning of value networks
The final stage of the training pipeline focuses on position evaluation,
estimating a value function vp(s) that predicts the outcome from posi-
tion s of games played by using policy p for both players28–30

E()= | = ∼…v s z s s a p[,]p
t t t T

Ideally, we would like to know the optimal value function under
perfect play v*(s); in practice, we instead estimate the value function

ρv p for our strongest policy, using the RL policy network pρ. We approx-
imate the value function using a value network vθ(s) with weights θ,

⁎()≈ ()≈ ()θ ρv s v s v sp . This neural network has a similar architecture
to the policy network, but outputs a single prediction instead of a prob-
ability distribution. We train the weights of the value network by regres-
sion on state-outcome pairs (s, z), using stochastic gradient descent to
minimize the mean squared error (MSE) between the predicted value
vθ(s), and the corresponding outcome z

∆θ
θ

∝
∂ ()
∂
(− ())θ

θ
v s z v s

The naive approach of predicting game outcomes from data con-
sisting of complete games leads to overfitting. The problem is that
successive positions are strongly correlated, differing by just one stone,
but the regression target is shared for the entire game. When trained
on the KGS data set in this way, the value network memorized the
game outcomes rather than generalizing to new positions, achieving a
minimum MSE of 0.37 on the test set, compared to 0.19 on the training
set. To mitigate this problem, we generated a new self-play data set
consisting of 30 million distinct positions, each sampled from a sepa-
rate game. Each game was played between the RL policy network and
itself until the game terminated. Training on this data set led to MSEs
of 0.226 and 0.234 on the training and test set respectively, indicating
minimal overfitting. Figure 2b shows the position evaluation accuracy
of the value network, compared to Monte Carlo rollouts using the fast
rollout policy pπ; the value function was consistently more accurate.
A single evaluation of vθ(s) also approached the accuracy of Monte
Carlo rollouts using the RL policy network pρ, but using 15,000 times
less computation.

Searching with policy and value networks
AlphaGo combines the policy and value networks in an MCTS algo-
rithm (Fig. 3) that selects actions by lookahead search. Each edge

(s, a) of the search tree stores an action value Q(s, a), visit count N(s, a),
and prior probability P(s, a). The tree is traversed by simulation (that
is, descending the tree in complete games without backup), starting
from the root state. At each time step t of each simulation, an action at
is selected from state st

= (()+ ())a Q s a u s aargmax , ,t
a

t t

so as to maximize action value plus a bonus

()∝
()
+ ()

u s a P s a
N s a

, ,
1 ,

that is proportional to the prior probability but decays with
repeated visits to encourage exploration. When the traversal reaches a
leaf node sL at step L, the leaf node may be expanded. The leaf position
sL is processed just once by the SL policy network pσ. The output prob-
abilities are stored as prior probabilities P for each legal action a,
()= (|)σP s a p a s, . The leaf node is evaluated in two very different ways:

first, by the value network vθ(sL); and second, by the outcome zL of a
random rollout played out until terminal step T using the fast rollout
policy pπ; these evaluations are combined, using a mixing parameter
λ, into a leaf evaluation V(sL)

λ λ()= (−) ()+θV s v s z1L L L

At the end of simulation, the action values and visit counts of all
traversed edges are updated. Each edge accumulates the visit count and
mean evaluation of all simulations passing through that edge

∑

∑

()= ()

()=
()

() ()

=

=

N s a s a i

Q s a
N s a

s a i V s

, 1 , ,

, 1
,

1 , ,

i

n

i

n

L
i

1

1

where sL
i is the leaf node from the ith simulation, and 1(s, a, i) indicates

whether an edge (s, a) was traversed during the ith simulation. Once
the search is complete, the algorithm chooses the most visited move
from the root position.

It is worth noting that the SL policy network pσ performed better in
AlphaGo than the stronger RL policy network pρ, presumably because
humans select a diverse beam of promising moves, whereas RL opti-
mizes for the single best move. However, the value function
()≈ ()θ ρv s v sp derived from the stronger RL policy network performed

Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation
traverses the tree by selecting the edge with maximum action value Q,
plus a bonus u(P) that depends on a stored prior probability P for that
edge. b, The leaf node may be expanded; the new node is processed once
by the policy network pσ and the output probabilities are stored as prior
probabilities P for each action. c, At the end of a simulation, the leaf node

is evaluated in two ways: using the value network vθ; and by running
a rollout to the end of the game with the fast rollout policy pπ, then
computing the winner with function r. d, Action values Q are updated to
track the mean value of all evaluations r(·) and vθ(·) in the subtree below
that action.

Selectiona b c dExpansion Evaluation Backup

pS

pV

Q + u(P)

Q + u(P)Q + u(P)

Q + u(P)

P P

P P

Q

Q

QQ

Q

rr r r

P

max

max

P

QT

QT

QT

QT

QT QT

© 2016 Macmillan Publishers Limited. All rights reserved

[Silver+2016]

Hierarchical Datasets Hyperbolic Space

[Image: wikipedia.org]

Motivation

Mammal

Primate

Human Monkey

Rodent

4 8 6 | N A T U R E | V O L 5 2 9 | 2 8 J A N U A R Y 2 0 1 6

ARTICLERESEARCH

learning of convolutional networks, won 11% of games against Pachi23
and 12% against a slightly weaker program, Fuego24.

Reinforcement learning of value networks
The final stage of the training pipeline focuses on position evaluation,
estimating a value function vp(s) that predicts the outcome from posi-
tion s of games played by using policy p for both players28–30

E()= | = ∼…v s z s s a p[,]p
t t t T

Ideally, we would like to know the optimal value function under
perfect play v*(s); in practice, we instead estimate the value function

ρv p for our strongest policy, using the RL policy network pρ. We approx-
imate the value function using a value network vθ(s) with weights θ,

⁎()≈ ()≈ ()θ ρv s v s v sp . This neural network has a similar architecture
to the policy network, but outputs a single prediction instead of a prob-
ability distribution. We train the weights of the value network by regres-
sion on state-outcome pairs (s, z), using stochastic gradient descent to
minimize the mean squared error (MSE) between the predicted value
vθ(s), and the corresponding outcome z

∆θ
θ

∝
∂ ()
∂
(− ())θ

θ
v s z v s

The naive approach of predicting game outcomes from data con-
sisting of complete games leads to overfitting. The problem is that
successive positions are strongly correlated, differing by just one stone,
but the regression target is shared for the entire game. When trained
on the KGS data set in this way, the value network memorized the
game outcomes rather than generalizing to new positions, achieving a
minimum MSE of 0.37 on the test set, compared to 0.19 on the training
set. To mitigate this problem, we generated a new self-play data set
consisting of 30 million distinct positions, each sampled from a sepa-
rate game. Each game was played between the RL policy network and
itself until the game terminated. Training on this data set led to MSEs
of 0.226 and 0.234 on the training and test set respectively, indicating
minimal overfitting. Figure 2b shows the position evaluation accuracy
of the value network, compared to Monte Carlo rollouts using the fast
rollout policy pπ; the value function was consistently more accurate.
A single evaluation of vθ(s) also approached the accuracy of Monte
Carlo rollouts using the RL policy network pρ, but using 15,000 times
less computation.

Searching with policy and value networks
AlphaGo combines the policy and value networks in an MCTS algo-
rithm (Fig. 3) that selects actions by lookahead search. Each edge

(s, a) of the search tree stores an action value Q(s, a), visit count N(s, a),
and prior probability P(s, a). The tree is traversed by simulation (that
is, descending the tree in complete games without backup), starting
from the root state. At each time step t of each simulation, an action at
is selected from state st

= (()+ ())a Q s a u s aargmax , ,t
a

t t

so as to maximize action value plus a bonus

()∝
()
+ ()

u s a P s a
N s a

, ,
1 ,

that is proportional to the prior probability but decays with
repeated visits to encourage exploration. When the traversal reaches a
leaf node sL at step L, the leaf node may be expanded. The leaf position
sL is processed just once by the SL policy network pσ. The output prob-
abilities are stored as prior probabilities P for each legal action a,
()= (|)σP s a p a s, . The leaf node is evaluated in two very different ways:

first, by the value network vθ(sL); and second, by the outcome zL of a
random rollout played out until terminal step T using the fast rollout
policy pπ; these evaluations are combined, using a mixing parameter
λ, into a leaf evaluation V(sL)

λ λ()= (−) ()+θV s v s z1L L L

At the end of simulation, the action values and visit counts of all
traversed edges are updated. Each edge accumulates the visit count and
mean evaluation of all simulations passing through that edge

∑

∑

()= ()

()=
()

() ()

=

=

N s a s a i

Q s a
N s a

s a i V s

, 1 , ,

, 1
,

1 , ,

i

n

i

n

L
i

1

1

where sL
i is the leaf node from the ith simulation, and 1(s, a, i) indicates

whether an edge (s, a) was traversed during the ith simulation. Once
the search is complete, the algorithm chooses the most visited move
from the root position.

It is worth noting that the SL policy network pσ performed better in
AlphaGo than the stronger RL policy network pρ, presumably because
humans select a diverse beam of promising moves, whereas RL opti-
mizes for the single best move. However, the value function
()≈ ()θ ρv s v sp derived from the stronger RL policy network performed

Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation
traverses the tree by selecting the edge with maximum action value Q,
plus a bonus u(P) that depends on a stored prior probability P for that
edge. b, The leaf node may be expanded; the new node is processed once
by the policy network pσ and the output probabilities are stored as prior
probabilities P for each action. c, At the end of a simulation, the leaf node

is evaluated in two ways: using the value network vθ; and by running
a rollout to the end of the game with the fast rollout policy pπ, then
computing the winner with function r. d, Action values Q are updated to
track the mean value of all evaluations r(·) and vθ(·) in the subtree below
that action.

Selectiona b c dExpansion Evaluation Backup

pS

pV

Q + u(P)

Q + u(P)Q + u(P)

Q + u(P)

P P

P P

Q

Q

QQ

Q

rr r r

P

max

max

P

QT

QT

QT

QT

QT QT

© 2016 Macmillan Publishers Limited. All rights reserved

[Silver+2016]

Hierarchical Datasets Hyperbolic Space

Volume increases exponentially

with its radius

Motivation

Mammal

Primate

Human Monkey

Rodent

4 8 6 | N A T U R E | V O L 5 2 9 | 2 8 J A N U A R Y 2 0 1 6

ARTICLERESEARCH

learning of convolutional networks, won 11% of games against Pachi23
and 12% against a slightly weaker program, Fuego24.

Reinforcement learning of value networks
The final stage of the training pipeline focuses on position evaluation,
estimating a value function vp(s) that predicts the outcome from posi-
tion s of games played by using policy p for both players28–30

E()= | = ∼…v s z s s a p[,]p
t t t T

Ideally, we would like to know the optimal value function under
perfect play v*(s); in practice, we instead estimate the value function

ρv p for our strongest policy, using the RL policy network pρ. We approx-
imate the value function using a value network vθ(s) with weights θ,

⁎()≈ ()≈ ()θ ρv s v s v sp . This neural network has a similar architecture
to the policy network, but outputs a single prediction instead of a prob-
ability distribution. We train the weights of the value network by regres-
sion on state-outcome pairs (s, z), using stochastic gradient descent to
minimize the mean squared error (MSE) between the predicted value
vθ(s), and the corresponding outcome z

∆θ
θ

∝
∂ ()
∂
(− ())θ

θ
v s z v s

The naive approach of predicting game outcomes from data con-
sisting of complete games leads to overfitting. The problem is that
successive positions are strongly correlated, differing by just one stone,
but the regression target is shared for the entire game. When trained
on the KGS data set in this way, the value network memorized the
game outcomes rather than generalizing to new positions, achieving a
minimum MSE of 0.37 on the test set, compared to 0.19 on the training
set. To mitigate this problem, we generated a new self-play data set
consisting of 30 million distinct positions, each sampled from a sepa-
rate game. Each game was played between the RL policy network and
itself until the game terminated. Training on this data set led to MSEs
of 0.226 and 0.234 on the training and test set respectively, indicating
minimal overfitting. Figure 2b shows the position evaluation accuracy
of the value network, compared to Monte Carlo rollouts using the fast
rollout policy pπ; the value function was consistently more accurate.
A single evaluation of vθ(s) also approached the accuracy of Monte
Carlo rollouts using the RL policy network pρ, but using 15,000 times
less computation.

Searching with policy and value networks
AlphaGo combines the policy and value networks in an MCTS algo-
rithm (Fig. 3) that selects actions by lookahead search. Each edge

(s, a) of the search tree stores an action value Q(s, a), visit count N(s, a),
and prior probability P(s, a). The tree is traversed by simulation (that
is, descending the tree in complete games without backup), starting
from the root state. At each time step t of each simulation, an action at
is selected from state st

= (()+ ())a Q s a u s aargmax , ,t
a

t t

so as to maximize action value plus a bonus

()∝
()
+ ()

u s a P s a
N s a

, ,
1 ,

that is proportional to the prior probability but decays with
repeated visits to encourage exploration. When the traversal reaches a
leaf node sL at step L, the leaf node may be expanded. The leaf position
sL is processed just once by the SL policy network pσ. The output prob-
abilities are stored as prior probabilities P for each legal action a,
()= (|)σP s a p a s, . The leaf node is evaluated in two very different ways:

first, by the value network vθ(sL); and second, by the outcome zL of a
random rollout played out until terminal step T using the fast rollout
policy pπ; these evaluations are combined, using a mixing parameter
λ, into a leaf evaluation V(sL)

λ λ()= (−) ()+θV s v s z1L L L

At the end of simulation, the action values and visit counts of all
traversed edges are updated. Each edge accumulates the visit count and
mean evaluation of all simulations passing through that edge

∑

∑

()= ()

()=
()

() ()

=

=

N s a s a i

Q s a
N s a

s a i V s

, 1 , ,

, 1
,

1 , ,

i

n

i

n

L
i

1

1

where sL
i is the leaf node from the ith simulation, and 1(s, a, i) indicates

whether an edge (s, a) was traversed during the ith simulation. Once
the search is complete, the algorithm chooses the most visited move
from the root position.

It is worth noting that the SL policy network pσ performed better in
AlphaGo than the stronger RL policy network pρ, presumably because
humans select a diverse beam of promising moves, whereas RL opti-
mizes for the single best move. However, the value function
()≈ ()θ ρv s v sp derived from the stronger RL policy network performed

Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation
traverses the tree by selecting the edge with maximum action value Q,
plus a bonus u(P) that depends on a stored prior probability P for that
edge. b, The leaf node may be expanded; the new node is processed once
by the policy network pσ and the output probabilities are stored as prior
probabilities P for each action. c, At the end of a simulation, the leaf node

is evaluated in two ways: using the value network vθ; and by running
a rollout to the end of the game with the fast rollout policy pπ, then
computing the winner with function r. d, Action values Q are updated to
track the mean value of all evaluations r(·) and vθ(·) in the subtree below
that action.

Selectiona b c dExpansion Evaluation Backup

pS

pV

Q + u(P)

Q + u(P)Q + u(P)

Q + u(P)

P P

P P

Q

Q

QQ

Q

rr r r

P

max

max

P

QT

QT

QT

QT

QT QT

© 2016 Macmillan Publishers Limited. All rights reserved

[Silver+2016]

Hierarchical Datasets Hyperbolic Space

[Nickel+2017]

Motivation

Mammal

Primate

Human Monkey

Rodent

4 8 6 | N A T U R E | V O L 5 2 9 | 2 8 J A N U A R Y 2 0 1 6

ARTICLERESEARCH

learning of convolutional networks, won 11% of games against Pachi23
and 12% against a slightly weaker program, Fuego24.

Reinforcement learning of value networks
The final stage of the training pipeline focuses on position evaluation,
estimating a value function vp(s) that predicts the outcome from posi-
tion s of games played by using policy p for both players28–30

E()= | = ∼…v s z s s a p[,]p
t t t T

Ideally, we would like to know the optimal value function under
perfect play v*(s); in practice, we instead estimate the value function

ρv p for our strongest policy, using the RL policy network pρ. We approx-
imate the value function using a value network vθ(s) with weights θ,

⁎()≈ ()≈ ()θ ρv s v s v sp . This neural network has a similar architecture
to the policy network, but outputs a single prediction instead of a prob-
ability distribution. We train the weights of the value network by regres-
sion on state-outcome pairs (s, z), using stochastic gradient descent to
minimize the mean squared error (MSE) between the predicted value
vθ(s), and the corresponding outcome z

∆θ
θ

∝
∂ ()
∂
(− ())θ

θ
v s z v s

The naive approach of predicting game outcomes from data con-
sisting of complete games leads to overfitting. The problem is that
successive positions are strongly correlated, differing by just one stone,
but the regression target is shared for the entire game. When trained
on the KGS data set in this way, the value network memorized the
game outcomes rather than generalizing to new positions, achieving a
minimum MSE of 0.37 on the test set, compared to 0.19 on the training
set. To mitigate this problem, we generated a new self-play data set
consisting of 30 million distinct positions, each sampled from a sepa-
rate game. Each game was played between the RL policy network and
itself until the game terminated. Training on this data set led to MSEs
of 0.226 and 0.234 on the training and test set respectively, indicating
minimal overfitting. Figure 2b shows the position evaluation accuracy
of the value network, compared to Monte Carlo rollouts using the fast
rollout policy pπ; the value function was consistently more accurate.
A single evaluation of vθ(s) also approached the accuracy of Monte
Carlo rollouts using the RL policy network pρ, but using 15,000 times
less computation.

Searching with policy and value networks
AlphaGo combines the policy and value networks in an MCTS algo-
rithm (Fig. 3) that selects actions by lookahead search. Each edge

(s, a) of the search tree stores an action value Q(s, a), visit count N(s, a),
and prior probability P(s, a). The tree is traversed by simulation (that
is, descending the tree in complete games without backup), starting
from the root state. At each time step t of each simulation, an action at
is selected from state st

= (()+ ())a Q s a u s aargmax , ,t
a

t t

so as to maximize action value plus a bonus

()∝
()
+ ()

u s a P s a
N s a

, ,
1 ,

that is proportional to the prior probability but decays with
repeated visits to encourage exploration. When the traversal reaches a
leaf node sL at step L, the leaf node may be expanded. The leaf position
sL is processed just once by the SL policy network pσ. The output prob-
abilities are stored as prior probabilities P for each legal action a,
()= (|)σP s a p a s, . The leaf node is evaluated in two very different ways:

first, by the value network vθ(sL); and second, by the outcome zL of a
random rollout played out until terminal step T using the fast rollout
policy pπ; these evaluations are combined, using a mixing parameter
λ, into a leaf evaluation V(sL)

λ λ()= (−) ()+θV s v s z1L L L

At the end of simulation, the action values and visit counts of all
traversed edges are updated. Each edge accumulates the visit count and
mean evaluation of all simulations passing through that edge

∑

∑

()= ()

()=
()

() ()

=

=

N s a s a i

Q s a
N s a

s a i V s

, 1 , ,

, 1
,

1 , ,

i

n

i

n

L
i

1

1

where sL
i is the leaf node from the ith simulation, and 1(s, a, i) indicates

whether an edge (s, a) was traversed during the ith simulation. Once
the search is complete, the algorithm chooses the most visited move
from the root position.

It is worth noting that the SL policy network pσ performed better in
AlphaGo than the stronger RL policy network pρ, presumably because
humans select a diverse beam of promising moves, whereas RL opti-
mizes for the single best move. However, the value function
()≈ ()θ ρv s v sp derived from the stronger RL policy network performed

Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation
traverses the tree by selecting the edge with maximum action value Q,
plus a bonus u(P) that depends on a stored prior probability P for that
edge. b, The leaf node may be expanded; the new node is processed once
by the policy network pσ and the output probabilities are stored as prior
probabilities P for each action. c, At the end of a simulation, the leaf node

is evaluated in two ways: using the value network vθ; and by running
a rollout to the end of the game with the fast rollout policy pπ, then
computing the winner with function r. d, Action values Q are updated to
track the mean value of all evaluations r(·) and vθ(·) in the subtree below
that action.

Selectiona b c dExpansion Evaluation Backup

pS

pV

Q + u(P)

Q + u(P)Q + u(P)

Q + u(P)

P P

P P

Q

Q

QQ

Q

rr r r

P

max

max

P

QT

QT

QT

QT

QT QT

© 2016 Macmillan Publishers Limited. All rights reserved

[Silver+2016]

Hierarchical Datasets Hyperbolic Space

[Nickel+2017]

How can we extend these works to
probabilistic inference?

Difficulty: Probabilistic Distribution on Curved Space

VAEs w/ Riemannian distribution [Ovinnikov2019; Mathieu+2019]

- Only limited to the Gaussian w/ scalar variance

- Needs rejection sampling

⇒ Construct distribution by sampling for flexible density and sampling

Lorentz model:

Defining probabilistic distribution on locally flat
tangent space and projecting its random variable
with the parallel transport and exponential map.

We can analytically get the log-density by
calculating volumetric change.

!"#"$$%$&'#"()*+#,

Construction of Hyperbolic Wrapped Distribution

Lorentz model:

Defining probabilistic distribution on locally flat
tangent space and projecting its random variable
with the parallel transport and exponential map.

We can analytically get the log-density by
calculating volumetric change.

!"#$%&%'()*+,)#

Construction of Hyperbolic Wrapped Distribution

Lorentz model:

Defining probabilistic distribution on locally flat
tangent space and projecting its random variable
with the parallel transport and exponential map.

We can analytically get the log-density by
calculating volumetric change.

Construction of Hyperbolic Wrapped Distribution

Properties of Hyperbolic Wrapped Distribution

A Differentiable Gaussian-like Distribution on Hyperbolic Space for Gradient-Based Learning

(a)

(b)

Figure 3: The heatmaps of log-likelihood of the pesudo-
hyperbolic Gaussians with various µ and Σ. We designate
the origin of hyperbolic space by the × mark. See Ap-
pendix B for further details.

Since the metric at the tangent space coincides with the Eu-
clidean metric, we can produce various types of Hyperbolic
distributions by applying our construction strategy to other
distributions defined on Euclidean space, such as Laplace
and Cauchy distribution.

4. Applications of G(µ,Σ)
4.1. Hyperbolic Variational Autoencoder

As an application of pseudo-hyperbolic Gaussian G(µ,Σ),
we will introduce hyperbolic variational autoencoder (Hy-
perbolic VAE), a variant of the variational autoencoder
(VAE) (Kingma & Welling, 2014; Rezende et al., 2014) in
which the latent variables are defined on hyperbolic space.
Given dataset D = {x(i)}Ni=1, the method of variational au-
toencoder aims to train a decoder model pθ(x|z) that can
create from pθ(z) a dataset that resembles D. The decoder
model is trained together with the encoder model qφ(z|x)
by maximizing the sum of evidence lower bound (ELBO)
that is defined for each x(i);

log pθ(x
(i)) ≥ L(θ,φ;x(i)) =

Eqφ(z|x(i))

[
log pθ(x

(i)|z)
]
−DKL(qφ(z|x(i))||pθ(z)),

(9)

where qφ(z|x(i)) is the variational posterior distribution.
In classic VAE, the choice of the prior pθ is the standard
normal, and the posterior distribution is also variationally
approximated by a Gaussian. Hyperbolic VAE is a simple
modification of the classic VAE in which pθ = G(µ0, I)
and qφ = G(µ,Σ). The model of µ and Σ is often referred
to as encoder. This parametric formulation of qφ is called
reparametrization trick, and it enables the evaluation of the
gradient of the objective function with respect to the net-
work parameters. To compare our method against, we used
β-VAE (Higgins et al., 2017), a variant of VAE that applies
a scalar weight β to the KL term in the objective function.

In Hyperbolic VAE, we assure that output µ of the encoder
is in ∈ Hn by applying expµ0

to the final layer of the en-
coder. That is, if h is the output, we can simply use

µ = expµ0
(h) =

(
cosh(∥h∥2), sinh(∥h∥2)

h
∥h∥2

)⊤
.

As stated in the previous sections, our distribution G(µ,Σ)
allows us to evaluate the ELBO exactly and to take the gra-
dient of the objective function. In a way, our distribution
of the variational posterior is an hyperbolic-analog of the
reparametrization trick.

4.2. Word Embedding

We can use our psudo-hyperbolic Gaussian G for proba-
bilistic word embedding. The work of Vilnis & McCal-
lum (2015) attempted to extract the linguistic and contex-
tual properties of words in a dictionary by embedding every
word and every context to a Gaussian distribution defined
on Euclidean space. We may extend their work by chang-
ing the destination of the map to the family of G. Let us
write a ∼ b to convey that there is a link between words
a and b, and let us use qs to designate the distribution to
be assigned to the word s. The objective function used in
Vilnis & McCallum (2015) is given by

L(θ) = E(s∼t,s̸∼t′)[max (0,m+ E(s, t)− E(s, t′))],

where E(s, t) represents the measure of similarity between
s and t evaluated with DKL(qs∥qt). In the original work, qs
and qt were chosen to be a Gaussian distribution. We can
incorporate hyperbolic geometry into this idea by choosing
qs = G(µ(s),Σ(s)).

5. Related Work
As mentioned in the introduction, most studies to date
that use hyperbolic space consider only deterministic map-
pings (Nickel & Kiela, 2017; 2018; Ganea et al., 2018a;b;
Gülçehre et al., 2019).

Very recently, Ovinnikov (2019) proposed an application
of Gaussian distribution on hyperbolic space. However,

Density:

Projection:

() (((((((
/ A /

.
(/ ./ /. /

/ /
)/ / /

./ /
/ A .

/
A . / /

/ ≃ ℝ$

Numerical Evaluations

A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning

Va
ni
lla

H
yp

er
bo

lic

Figure 6: Samples from Vanilla and Hyperbolic VAEs trained on Atari 2600 Breakout screens. Each row was generated by
sweeping the norm of ṽ from 1.0 to 10.0 in a log-scale.

Vanilla
Vanilla, |v|2 = 200

Figure 7: Estimated proportions of remaining blocks for
Vanilla and Hyperbolic VAEs trained on Atari 2600 Break-
out screens as they vary with the norm of latent variables
sampled from a prior.

relation was 0.846 for the Hyperbolic VAE. For the Vanilla
VAE, the correlation was 0.712. We emphasize that no in-
formation regarding the reward was used during the train-
ing of both Vanilla and Hyperbolic VAEs.

6.4. Word Embeddings

Lastly, we applied hyperbolic wrapped distribution to word
embedding problem. We trained probabilistic word embed-
ding models with WordNet nouns dataset (Miller, 1998)
and evaluated the reconstruction performance of them (Ta-
ble 3). We followed the procedure of Poincaré embedding
(Nickel & Kiela, 2017) and initialized all embeddings in
the neighborhood of the origin. In particular, we initial-
ized each weight in the first linear part of the embedding
by N (0, 0.01). We treated the first 50 epochs as a burn-in
phase and reduced the learning rate by a factor of 40 after
the burn-in phase.

In Table 3, ‘Euclid’ refers to the word embedding with

Gaussian distribution on Euclidean space (Vilnis & Mc-
Callum, 2015), and ‘Hyperbolic’ refers to our proposed
method based on hyperbolic wrapped distribution. Our
hyperbolic model performed better than Vilnis’ Euclidean
counterpart when the latent space is low dimensional. We
used diagonal variance for both models above. Please see
Appendix C.4 for the full results. We also performed the
same experiment with unit variance. The performance dif-
ference with small latent dimension was much more re-
markable when we use unit variance.

Euclid Hyperbolic

n MAP Rank MAP Rank

5 0.296±.006 25.09±.80 0.506±.017 20.55±1.34

10 0.778±.007 4.70±.05 0.795±.007 5.07±.12

20 0.894±.002 2.23±.03 0.897±.005 2.54±.20

50 0.942±.003 1.51±.04 0.975±.001 1.19±.01

100 0.953±.002 1.34±.02 0.978±.002 1.15±.01

Table 3: Experimental results of the reconstruction perfor-
mance on the transitive closure of the WordNet noun hier-
archy for several latent space dimension n. We calculated
the mean and the ±1 SD with three different experiments.

7. Conclusion
In this paper, we proposed a novel parametrizaiton for the
density of hyperbolic wrapped distribution that can both be
differentiated and evaluated analytically. Our experimen-
tal results on hyperbolic word embedding and hyperbolic
VAE suggest that there is much more room left for the ap-
plication of hyperbolic space. Our parametrization enables
gradient-based training of probabilistic models defined on
hyperbolic space and opens the door to the investigation of
complex models on hyperbolic space that could not have
been explored before.

A Differentiable Gaussian-like Distribution on Hyperbolic Space for
Gradient-Based Learning

Yoshihiro Nagano 1 Shoichiro Yamaguchi 2 Yasuhiro Fujita 2 Masanori Koyama 2

Abstract
Hyperbolic space is a geometry that is known to
be well-suited for representation learning of data
with an underlying hierarchical structure. In this
paper, we present a novel hyperbolic distribution
called pseudo-hyperbolic Gaussian, a Gaussian-
like distribution on hyperbolic space whose den-
sity can be evaluated analytically and differen-
tiated with respect to the parameters. Our dis-
tribution enables the gradient-based learning of
the probabilistic models on hyperbolic space that
could never have been considered before. Also,
we can sample from this hyperbolic probability
distribution without resorting to auxiliary means
like rejection sampling. As applications of our
distribution, we develop a hyperbolic-analog of
variational autoencoder and a method of prob-
abilistic word embedding on hyperbolic space.
We demonstrate the efficacy of our distribution
on various datasets including MNIST, Atari 2600
Breakout, and WordNet.

1. Introduction
Recently, hyperbolic geometry is drawing attention as a
powerful geometry to assist deep networks in capturing
fundamental structural properties of data such as a hi-
erarchy. Hyperbolic attention network (Gülçehre et al.,
2019) improved the generalization performance of neural
networks on various tasks including machine translation
by imposing the hyperbolic geometry on several parts of
neural networks. Poincaré embeddings (Nickel & Kiela,
2017) succeeded in learning a parsimonious representation
of symbolic data by embedding the dataset into Poincaré
balls.

In the task of data embedding, the choice of the target space
1Department of Complexity Science and Engineering, The

University of Tokyo, Japan 2Preferred Networks, Inc., Japan.
Correspondence to: Yoshihiro Nagano <nagano@mns.k.u-
tokyo.ac.jp>.

Copyright 2019 by the authors.

(a) A tree representation of the
training dataset

!!!!!!"

!!!!!"" !!!!"!"

!!!"!"" !!"!!"" !"!!"!" "!!!"!"

!!"!"!"

"!!""!!
"!!!""!

(b) Normal VAE (β = 1.0) (c) Hyperbolic VAE

Figure 1: The visual results of Hyperbolic VAE applied to
an artificial dataset generated by applying random pertur-
bations to a binary tree. The visualization is being done
on the Poincaré ball. The red points are the embeddings
of the original tree, and the blue points are the embeddings
of noisy observations generated from the tree. The pink
× represents the origin of the hyperbolic space. The VAE
was trained without the prior knowledge of the tree struc-
ture. Please see 6.1 for experimental details

determines the properties of the dataset that can be learned
from the embedding. For the dataset with a hierarchical
structure, in particular, the number of relevant features can
grow exponentially with the depth of the hierarchy. Eu-
clidean space is often inadequate for capturing the struc-
tural information (Figure 1). If the choice of the target
space of the embedding is limited to Euclidean space, one
might have to prepare extremely high dimensional space as
the target space to guarantee small distortion. However, the
same embedding can be done remarkably well if the desti-
nation is the hyperbolic space (Sarkar, 2012; Sala et al.,
2018).

A Differentiable Gaussian-like Distribution on Hyperbolic Space for
Gradient-Based Learning

Yoshihiro Nagano 1 Shoichiro Yamaguchi 2 Yasuhiro Fujita 2 Masanori Koyama 2

Abstract
Hyperbolic space is a geometry that is known to
be well-suited for representation learning of data
with an underlying hierarchical structure. In this
paper, we present a novel hyperbolic distribution
called pseudo-hyperbolic Gaussian, a Gaussian-
like distribution on hyperbolic space whose den-
sity can be evaluated analytically and differen-
tiated with respect to the parameters. Our dis-
tribution enables the gradient-based learning of
the probabilistic models on hyperbolic space that
could never have been considered before. Also,
we can sample from this hyperbolic probability
distribution without resorting to auxiliary means
like rejection sampling. As applications of our
distribution, we develop a hyperbolic-analog of
variational autoencoder and a method of prob-
abilistic word embedding on hyperbolic space.
We demonstrate the efficacy of our distribution
on various datasets including MNIST, Atari 2600
Breakout, and WordNet.

1. Introduction
Recently, hyperbolic geometry is drawing attention as a
powerful geometry to assist deep networks in capturing
fundamental structural properties of data such as a hi-
erarchy. Hyperbolic attention network (Gülçehre et al.,
2019) improved the generalization performance of neural
networks on various tasks including machine translation
by imposing the hyperbolic geometry on several parts of
neural networks. Poincaré embeddings (Nickel & Kiela,
2017) succeeded in learning a parsimonious representation
of symbolic data by embedding the dataset into Poincaré
balls.

In the task of data embedding, the choice of the target space
1Department of Complexity Science and Engineering, The

University of Tokyo, Japan 2Preferred Networks, Inc., Japan.
Correspondence to: Yoshihiro Nagano <nagano@mns.k.u-
tokyo.ac.jp>.

Copyright 2019 by the authors.

(a) A tree representation of the
training dataset

!!!!!!"

!!!!!"" !!!!"!"

!!!"!"" !!"!!"" !"!!"!" "!!!"!"

!!"!"!"

"!!""!!
"!!!""!

(b) Normal VAE (β = 1.0) (c) Hyperbolic VAE

Figure 1: The visual results of Hyperbolic VAE applied to
an artificial dataset generated by applying random pertur-
bations to a binary tree. The visualization is being done
on the Poincaré ball. The red points are the embeddings
of the original tree, and the blue points are the embeddings
of noisy observations generated from the tree. The pink
× represents the origin of the hyperbolic space. The VAE
was trained without the prior knowledge of the tree struc-
ture. Please see 6.1 for experimental details

determines the properties of the dataset that can be learned
from the embedding. For the dataset with a hierarchical
structure, in particular, the number of relevant features can
grow exponentially with the depth of the hierarchy. Eu-
clidean space is often inadequate for capturing the struc-
tural information (Figure 1). If the choice of the target
space of the embedding is limited to Euclidean space, one
might have to prepare extremely high dimensional space as
the target space to guarantee small distortion. However, the
same embedding can be done remarkably well if the desti-
nation is the hyperbolic space (Sarkar, 2012; Sala et al.,
2018).

Variational Autoencoder
Hyperbolic VAE could learn
not only the true hierarchical
structure but also noisy unseen
data without any explicit
knowledge for tree.

Word embedding
Our model outperformed
Euclidean counterpart for
WordNet nouns dataset.

Conclusion

Proposed a projection-based probabilistic distribution on
hyperbolic space which is easy to use with gradient-based
learning.
Constructed the wrapped normal distribution on Lorentz
model by projecting the random variable on locally flat tangent
space.
Numerically evaluated the performance of our model on
various datasets including MNIST, Atari 2600 Breakout, and
WordNet.

Poster: 6:30-9:00 PM @Pacific Ballroom #7

