

ICML'19, Jun 12th, 2019

A Wrapped Normal Distribution on Hyperbolic Space for Gradient Based Learning

<u>Yoshihiro Nagano¹</u>, Shoichiro Yamaguchi², Yasuhiro Fujita², Masanori Koyama² ¹⁾ Department of Complexity Science, The University of Tokyo, Japan

²⁾ Preferred Networks, Inc., Japan

Code: github.com/pfnet-research/hyperbolic_wrapped_distribution Poster: 6:30-9:00 PM @Pacific Ballroom #7

Hierarchical Datasets

Hyperbolic Space

[Image: wikipedia.org]

Hierarchical Datasets

 \bigcirc

Hyperbolic Space

Hierarchical Datasets

Hyperbolic Space

Structure

Color

Hyperbolic Geometry

Influenza

Hierarchical Datasets

Hyperbolic Space

Difficulty: Probabilistic Distribution on <u>Curved Space</u>

VAEs w/ Riemannian distribution [Ovinnikov2019; Mathieu+2019]

$$\mathcal{N}_{\mathbb{B}_{c}^{d}}\left(\boldsymbol{x}|\boldsymbol{\mu},\sigma^{2}\right) = \frac{1}{Z(\sigma)} \exp\left(-\frac{d_{p}^{c}(\boldsymbol{\mu},\boldsymbol{x})^{2}}{2\sigma^{2}}\right)$$
$$Z_{r}(\sigma) = \sqrt{\frac{\pi}{2}}\sigma \frac{1}{(2\sqrt{c})^{d-1}} \sum_{k=0}^{d-1} (-1)^{k} \binom{d-1}{k} e^{\frac{(d-1-2k)^{2}}{2}c\sigma^{2}} \left[1 + \operatorname{erf}\left(\frac{(d-1-2k)\sqrt{c\sigma}}{\sqrt{2}}\right)\right]$$

- Only limited to the Gaussian w/ scalar variance
- Needs rejection sampling

⇒ Construct distribution by sampling for flexible density and sampling

Construction of Hyperbolic Wrapped Distribution

Lorentz model:
$$\mathbb{H}^n = \left\{ z \in \mathbb{R}^{n+1} : \langle z, z \rangle_{\mathcal{L}} = -1 \right\}$$

Defining probabilistic distribution on locally flat tangent space and projecting its random variable with the parallel transport and exponential map.

We can analytically get the log-density by calculating volumetric change.

Construction of Hyperbolic Wrapped Distribution

Lorentz model:
$$\mathbb{H}^n = \left\{ z \in \mathbb{R}^{n+1} : \langle z, z \rangle_{\mathcal{L}} = -1 \right\}$$

Defining probabilistic distribution on locally flat tangent space and projecting its random variable with the parallel transport and exponential map.

We can analytically get the log-density by calculating volumetric change.

Construction of Hyperbolic Wrapped Distribution

Lorentz model:
$$\mathbb{H}^n = \left\{ z \in \mathbb{R}^{n+1} : \langle z, z \rangle_{\mathcal{L}} = -1 \right\}$$

Defining probabilistic distribution on locally flat tangent space and projecting its random variable with the parallel transport and exponential map.

We can analytically get the log-density by calculating volumetric change.

Properties of Hyperbolic Wrapped Distribution

Density:

$$\mathcal{G}(z; \boldsymbol{\mu}, \Sigma) = \left(\frac{r}{\sinh r}\right)^{n-1} \mathcal{N}(\boldsymbol{\nu}; \boldsymbol{0}, \Sigma)$$

Projection: Z

$$= \exp_{\mu} \circ \mathrm{PT}_{\mu_0 \to \mu}(\mathbf{v})$$

	Riemannian distribution	Wrapped distribution (Ours)
Construction	Maximum entropy on the manifold	Projecting r.v. defined on the tangent space
Sampling	Rejection sampling	Conventional sampling w/ deterministic transformation
Expressivity	Gaussian distribution with scalar variance	Any distribution on the tangent space ($\simeq \mathbb{R}^n$)

Conclusion

Proposed a projection-based probabilistic distribution on hyperbolic space which is easy to use with gradient-based learning.

Constructed the wrapped normal distribution on Lorentz model by projecting the random variable on locally flat tangent space.

Numerically evaluated the performance of our model on various datasets including MNIST, Atari 2600 Breakout, and WordNet.

Poster: 6:30-9:00 PM @Pacific Ballroom #7