

Disentangling Disentanglement in Variational Autoencoders

ICML 2019

Emile Mathieu*, Tom Rainforth*, N. Siddharth*, Yee Whye Teh June 12, 2019

Departments of Statistics and Engineering Science, University of Oxford

Variational Autoencoders

Disentanglement

Disentanglement = Independence

Decomposition \in {Independence, Clustering, Sparsity, ...}

Decomposition: A Generalization of Disentanglement

Characterise decomposition as the fulfilment of two factors:

- (a) level of overlap between encodings in the latent space,
- (b) matching between the marginal posterior $q_{\phi}(z)$ and structured prior p(z) to constrain with the required decomposition.

Desired Structure

Insufficient Overlap

Too Much Overlap

Appropriate Overlap

Implications

 β -VAE disentangles largely by controlling the level of overlap It places no direct pressure on the latents to be independent!

 $\mathcal{L}_{\alpha,\beta}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x} | \mathbf{z})] \qquad \text{Reconstruct observations} \\ -\beta \cdot \mathsf{KL}(q_{\phi}(\mathbf{z} | \mathbf{x}) || p(\mathbf{z})) \qquad \text{Control level of overlap} \\ -\alpha \cdot \mathbb{D}(q_{\phi}(\mathbf{z}), p(\mathbf{z})) \qquad \text{Impose desired structure}$

Independence: $p(z) = \mathcal{N}(0, \sigma^*)$

Figure 1: β -VAE trained on 2D Shapes¹ computing disentanglement².

¹Matthey et al., dSprites: Disentanglement testing Sprites dataset, p. 1.

²Kim and Mnih, "Disentangling by Factorising", p. 2.

Clustering: $p(\mathbf{z}) = \sum_k \rho_k \cdot \mathcal{N}(\boldsymbol{\mu}_k, \boldsymbol{\sigma}_k)$

Figure 2: Density of aggregate posterior $q_{\phi}(z)$ with different α , β for the pinwheel dataset.³

³http://hips.seas.harvard.edu/content/synthetic-pinwheel-data-matlab.

Sparsity: $p(\mathbf{z}) = \prod_d (1 - \gamma) \cdot \mathcal{N}(\mathbf{z}_d; 0, 1) + \gamma \cdot \mathcal{N}(\mathbf{z}_d; 0, \sigma_0^2)$

Figure 3: Sparsity of learnt representations for the Fashion-MNIST⁴ dataset.

⁴Xiao, Rasul, and Vollgraf, Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms.

Sparsity: $p(\mathbf{z}) = \prod_d (1 - \gamma) \cdot \mathcal{N}(\mathbf{z}_d; 0, 1) + \gamma \cdot \mathcal{N}(\mathbf{z}_d; 0, \sigma_0^2)$

Figure 3: Latent space traversals for "active" dimensions⁴.

⁴Xiao, Rasul, and Vollgraf, Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms.

Sparsity: $p(\mathbf{z}) = \prod_d (1 - \gamma) \cdot \mathcal{N}(\mathbf{z}_d; 0, 1) + \gamma \cdot \mathcal{N}(\mathbf{z}_d; 0, \sigma_0^2)$

Figure 3: Sparsity vs regularisation strength α (higher better)⁴.

⁴Xiao, Rasul, and Vollgraf, Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms.

Recap

We propose and develop:

- Decomposition: a generalisation of disentanglement involving:
 - (a) overlap of latent encodings
 - (b) match between $q_{\phi}(z)$ and p(z)
- A theoretical analysis of the β -VAE objective showing it primarily only contributes to overlap.
- An objective that incorporates both factors (a) and (b).
- Experiments that showcase efficacy at different decompositions:
 - independence clustering sparsity

Emile Mathieu

Tom Rainforth

N. Siddharth

Yee Whye Teh

Code

Paper

Come talk to us at our poster: #5