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Variational Autoencoders
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Disentanglement

= Independence
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Disentanglement = Independence
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Decomposition ∈ {Independence, Clustering, Sparsity, …}

x1

x2

x3

x4

x5

x

z1

z2

z3

z4

Generative
Model Inference

Model
zl
(gender)

zm (beard)
zn

(makeup)

Co-Related
Factors

1



Decomposition: A Generalization of Disentanglement

Characterise decomposition as the fulfilment of two factors:

(a) level of overlap between encodings in the latent space,
(b) matching between the marginal posterior qφ(z) and structured

prior p(z) to constrain with the required decomposition.
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Decomposition: An Analysis
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Decomposition: An Analysis
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Decomposition: An Analysis

Too Much Overlap

q�(z|x) p✓(x|z)

Too Much

Overlap

pD(x) q�(z) p(z) p✓(x)

3



Decomposition: An Analysis
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Overlap — Deconstructing the β-VAE

Lβ(x) = Eqφ(z|x)[logpθ(x|z)]− β · KL(qφ(z|x)||p(z))
= L(x) (πθ,β ,qφ)︸ ︷︷ ︸

ELBO with β-annealed prior

+(β − 1) · Hqφ︸ ︷︷ ︸
maxent

+ log Fβ︸ ︷︷ ︸
constant

Implications
β-VAE disentangles largely by controlling the level of overlap
It places no direct pressure on the latents to be independent!
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Decomposition: Objective

Lα,β(x) = Eqφ(z|x)[logpθ(x | z)] Reconstruct observations

− β · KL(qφ(z | x) ‖ p(z)) Control level of overlap

− α · D(qφ(z),p(z)) Impose desired structure
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Decomposition: Generalising Disentanglement

Independence: p(z) = N (0,σ?)

Figure 1: β-VAE trained on 2D Shapes1 computing disentanglement2.

1Matthey et al., dSprites: Disentanglement testing Sprites dataset, p. 1.
2Kim and Mnih, “Disentangling by Factorising”, p. 2.

6



Decomposition: Generalising Disentanglement

Clustering: p(z) = ∑
k ρk · N (µk,σk)
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Figure 2: Density of aggregate posterior qφ(z) with different α, β for the
pinwheel dataset.3

3http://hips.seas.harvard.edu/content/synthetic-pinwheel-data-matlab. 7

http://hips.seas.harvard.edu/content/synthetic-pinwheel-data-matlab


Decomposition: Generalising Disentanglement

Sparsity: p(z) = ∏
d (1− γ) · N (zd; 0, 1) + γ · N (zd; 0, σ20)
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Figure 3: Sparsity of learnt representations for the Fashion-MNIST4 dataset.

4Xiao, Rasul, and Vollgraf, Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms.
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Decomposition: Generalising Disentanglement

Sparsity: p(z) = ∏
d (1− γ) · N (zd; 0, 1) + γ · N (zd; 0, σ20)
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Figure 3: Latent space traversals for “active” dimensions4.

4Xiao, Rasul, and Vollgraf, Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms.
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Decomposition: Generalising Disentanglement

Sparsity: p(z) = ∏
d (1− γ) · N (zd; 0, 1) + γ · N (zd; 0, σ20)
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Figure 3: Sparsity vs regularisation strength α (higher better)4.

4Xiao, Rasul, and Vollgraf, Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms.
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Recap

We propose and develop:

• Decomposition: a generalisation of disentanglement involving:
(a) overlap of latent encodings
(b) match between qφ(z) and p(z)

• A theoretical analysis of the β-VAE objective showing it primarily
only contributes to overlap.

• An objective that incorporates both factors (a) and (b).
• Experiments that showcase efficacy at different decompositions:
• independence • clustering • sparsity
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